A short-term electric load forecast method based on improved sequence-to-sequence GRU with adaptive temporal dependence

计算机科学 序列(生物学) 算法 自相关 期限(时间) 范畴变量 正弦 稳健性(进化) 三角函数 数学 统计 机器学习 遗传学 生物化学 量子力学 生物 基因 物理 化学 几何学
作者
Dan Li,Guangfan Sun,Shuwei Miao,Yingzhong Gu,Yuanhang Zhang,Shuai He
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:137: 107627-107627 被引量:32
标识
DOI:10.1016/j.ijepes.2021.107627
摘要

Accurate and efficient short-term electric load forecast (STLF) is essential for power systems’ reliable and economical operation. The temporal dependence of actual load exhibits dynamics and variability, while the current STLF methods often neglect it, resulting in poor robustness. This paper proposes an STLF method based on an improved sequence-to-sequence gated recurrent unit network (S2S-IGRU) to solve this problem, with a three-step adaptive framework for following dynamic temporal dependency pattern. In the first step, the maximum duration of the temporal dependence is estimated empirically based on the autocorrelation coefficient. It is set as the initial upper limit of the window length to construct the time series samples. In addition, a sine–cosine cycle encoder is used for the periodic categorical inputs. In the second step, an S2S-IGRU initialized with a Chrono initializer is used to forecast the load in upcoming days, which enables a flexible setting of the memory retention time. In the third step, the prediction error changing curve with window length is selected as a fine-tuning criterion to obtain the optimal length of the time window. The results from two real examples justify the proposed method of significantly improving forecast accuracy and adaptability on varied forecast horizons and load datasets with different temporal dynamic patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助山雷采纳,获得10
刚刚
刚刚
田様应助sikaixue采纳,获得10
1秒前
回眸发布了新的文献求助10
1秒前
科研通AI6应助llltencion采纳,获得10
3秒前
HJJHJH发布了新的文献求助10
3秒前
LaTeXer应助科研通管家采纳,获得30
4秒前
ATIHSA88应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
坦率灵槐应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
无名应助科研通管家采纳,获得20
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
ATIHSA88应助科研通管家采纳,获得10
5秒前
坦率灵槐应助科研通管家采纳,获得10
5秒前
zhonghang2024应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
Twonej应助科研通管家采纳,获得10
5秒前
5秒前
坦率灵槐应助科研通管家采纳,获得10
6秒前
123应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
ATIHSA88应助科研通管家采纳,获得10
6秒前
坦率灵槐应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
xinghui应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得100
6秒前
xu应助科研通管家采纳,获得10
6秒前
123应助科研通管家采纳,获得10
7秒前
zzx发布了新的文献求助10
7秒前
紫菀应助科研通管家采纳,获得10
7秒前
zhonghang2024应助科研通管家采纳,获得10
7秒前
ATIHSA88应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642428
求助须知:如何正确求助?哪些是违规求助? 4758826
关于积分的说明 15017538
捐赠科研通 4801013
什么是DOI,文献DOI怎么找? 2566317
邀请新用户注册赠送积分活动 1524459
关于科研通互助平台的介绍 1483969