Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy

医学 无线电技术 磁共振成像 三阴性乳腺癌 乳腺癌 放射科 单变量 接收机工作特性 乳房磁振造影 癌症 多元统计 内科学 机器学习 乳腺摄影术 计算机科学
作者
Mingming Ma,Liangyu Gan,Yinhua Liu,Yuan Jiang,Ling Xin,Yi Liu,Naishan Qin,Yuanjia Cheng,Qian Liu,Ling Xu,Yaofeng Zhang,Xiangpeng Wang,Xiaodong Zhang,Jingming Ye,Xiaoying Wang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:146: 110095-110095 被引量:33
标识
DOI:10.1016/j.ejrad.2021.110095
摘要

To establish radiomics prediction models based on automatic segmented magnetic resonance imaging (MRI) for predicting the systemic recurrence of triple-negative breast cancer (TNBC) in patients after neoadjuvant chemotherapy (NAC).A total of 147 patients with TNBC who underwent NAC between January 2009 and December 2018 were enrolled in this study. Clinicopathologic data were collected, and the differences between the recurrent and nonrecurrent patients were analyzed by univariate and multivariate analyses. Patients were randomly divided into training and testing sets. The training set consisted of 104 patients (recurrence: 22, nonrecurrence: 82), and the testing set consisted of 43 patients (recurrence: 9, nonrecurrence: 34). To establish the radiomics prediction model, we used a deep learning segmentation model to automatically segment tumor areas on dynamiccontrast-enhanced-MRI images of pre- and post-NAC magnetic resonance examinations. Radiomics features were then extracted from the tumor areas. Three MRI radiomics models were developed in the training set: a radiomics model based on pre-NAC MRI features (model 1), a radiomics model based on post-NAC MRI features (model 2), and a radiomics model based on both pre- and post-NAC MRI features (model 3). A clinical model for predicting systemic recurrence was built in the training set using independent clinical prediction factors. Receiver operating characteristic curve analysis was used to evaluate the performance of the radiomics and clinical models.The clinical model yielded areas under the curve (AUCs) of 0.747 in the training set and 0.737 in the testing set in terms of predicting systemic recurrence. Models 1, 2, and 3 yielded AUCs of 0.879, 0.91, and 0.963 in the training set and 0.814, 0.802, and 0.933 in the testing set, respectively, in terms of predicting systemic recurrence. All of the radiomics models had achieved higher AUCs than the clinical model in the testing set. DeLong test was used to compare the AUCs between the models and indicated that the predictive performance of model 3 was better than the clinical model, and the difference was statistically significant (p < 0.05).The radiomics models built based on the combination of pre- and post-NAC MRI features showed good performance in predicting whether patients with TNBC will have systemic recurrence within 3 years post-NAC. This can help us non-invasively identify which patients are at high risk of recurrence post-NAC, so that we can strengthen follow-up and treatment of these patients. Then the prognosis of these patients might be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhouYW完成签到,获得积分0
1秒前
我爱Chem完成签到 ,获得积分10
2秒前
sylinmm完成签到,获得积分10
3秒前
DY完成签到,获得积分10
3秒前
manmanzhong完成签到 ,获得积分10
4秒前
wipmzxu完成签到,获得积分10
5秒前
5秒前
yiyi完成签到,获得积分10
6秒前
踏水追风完成签到,获得积分10
7秒前
youili完成签到 ,获得积分10
7秒前
9秒前
食草味完成签到,获得积分20
10秒前
凌兰完成签到 ,获得积分10
10秒前
XZ完成签到,获得积分10
11秒前
小羊完成签到 ,获得积分10
11秒前
陈牛逼完成签到 ,获得积分10
11秒前
斯文败类应助adeno采纳,获得10
12秒前
积极废物完成签到 ,获得积分10
13秒前
深情安青应助贾不可采纳,获得10
13秒前
shimenwanzhao完成签到 ,获得积分0
14秒前
苻醉山完成签到 ,获得积分0
17秒前
DezhaoWang完成签到,获得积分10
17秒前
memory完成签到,获得积分10
17秒前
山神厘子完成签到,获得积分10
17秒前
犹豫山河完成签到,获得积分20
21秒前
leo完成签到 ,获得积分10
21秒前
hyf完成签到 ,获得积分10
22秒前
双青豆完成签到 ,获得积分10
24秒前
里埃尔塞因斯完成签到 ,获得积分10
24秒前
tetrakis完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
彭于彦祖完成签到,获得积分0
28秒前
王QQ完成签到 ,获得积分10
28秒前
和风完成签到 ,获得积分10
28秒前
万能图书馆应助贾不可采纳,获得10
28秒前
CLY完成签到,获得积分10
29秒前
miaomiao发布了新的文献求助100
33秒前
三杠完成签到 ,获得积分10
33秒前
嗒嗒完成签到,获得积分10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027