Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy

医学 无线电技术 磁共振成像 三阴性乳腺癌 乳腺癌 放射科 单变量 接收机工作特性 乳房磁振造影 癌症 多元统计 内科学 机器学习 乳腺摄影术 计算机科学
作者
Mingming Ma,Liangyu Gan,Yinhua Liu,Yuan Jiang,Ling Xin,Yi Liu,Naishan Qin,Yuanjia Cheng,Qian Liu,Ling Xu,Yaofeng Zhang,Xiangpeng Wang,Xiaodong Zhang,Jingming Ye,Xiaoying Wang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:146: 110095-110095 被引量:37
标识
DOI:10.1016/j.ejrad.2021.110095
摘要

To establish radiomics prediction models based on automatic segmented magnetic resonance imaging (MRI) for predicting the systemic recurrence of triple-negative breast cancer (TNBC) in patients after neoadjuvant chemotherapy (NAC).A total of 147 patients with TNBC who underwent NAC between January 2009 and December 2018 were enrolled in this study. Clinicopathologic data were collected, and the differences between the recurrent and nonrecurrent patients were analyzed by univariate and multivariate analyses. Patients were randomly divided into training and testing sets. The training set consisted of 104 patients (recurrence: 22, nonrecurrence: 82), and the testing set consisted of 43 patients (recurrence: 9, nonrecurrence: 34). To establish the radiomics prediction model, we used a deep learning segmentation model to automatically segment tumor areas on dynamiccontrast-enhanced-MRI images of pre- and post-NAC magnetic resonance examinations. Radiomics features were then extracted from the tumor areas. Three MRI radiomics models were developed in the training set: a radiomics model based on pre-NAC MRI features (model 1), a radiomics model based on post-NAC MRI features (model 2), and a radiomics model based on both pre- and post-NAC MRI features (model 3). A clinical model for predicting systemic recurrence was built in the training set using independent clinical prediction factors. Receiver operating characteristic curve analysis was used to evaluate the performance of the radiomics and clinical models.The clinical model yielded areas under the curve (AUCs) of 0.747 in the training set and 0.737 in the testing set in terms of predicting systemic recurrence. Models 1, 2, and 3 yielded AUCs of 0.879, 0.91, and 0.963 in the training set and 0.814, 0.802, and 0.933 in the testing set, respectively, in terms of predicting systemic recurrence. All of the radiomics models had achieved higher AUCs than the clinical model in the testing set. DeLong test was used to compare the AUCs between the models and indicated that the predictive performance of model 3 was better than the clinical model, and the difference was statistically significant (p < 0.05).The radiomics models built based on the combination of pre- and post-NAC MRI features showed good performance in predicting whether patients with TNBC will have systemic recurrence within 3 years post-NAC. This can help us non-invasively identify which patients are at high risk of recurrence post-NAC, so that we can strengthen follow-up and treatment of these patients. Then the prognosis of these patients might be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZeKaWa应助张zhang采纳,获得10
1秒前
panbl451245完成签到,获得积分20
4秒前
4秒前
5秒前
6秒前
小彭陪小崔读个研完成签到 ,获得积分10
8秒前
8秒前
panbl451245发布了新的文献求助10
8秒前
侯_发布了新的文献求助10
10秒前
852应助禹代秋采纳,获得10
10秒前
科研通AI6应助李洪卓采纳,获得10
10秒前
小刘恨香菜完成签到 ,获得积分10
10秒前
11秒前
12秒前
13秒前
12发布了新的文献求助10
17秒前
浮游应助苗笑卉采纳,获得10
18秒前
wonder123发布了新的文献求助10
20秒前
李天王发布了新的文献求助10
20秒前
12完成签到 ,获得积分10
20秒前
以七完成签到 ,获得积分10
21秒前
沉默碧琴完成签到,获得积分20
22秒前
22秒前
于雅霏完成签到,获得积分10
23秒前
kai完成签到,获得积分20
24秒前
26秒前
shuyingRen完成签到,获得积分10
30秒前
科研通AI2S应助李天王采纳,获得10
30秒前
chenzhi发布了新的文献求助10
31秒前
Owen应助Robot采纳,获得10
31秒前
完美世界应助山茱萸采纳,获得10
33秒前
弹指一挥间完成签到,获得积分10
36秒前
12完成签到,获得积分10
38秒前
所所应助chenzhi采纳,获得10
39秒前
39秒前
星辰大海应助桃桃桃桃采纳,获得30
41秒前
山茱萸完成签到,获得积分10
42秒前
山茱萸发布了新的文献求助10
45秒前
Verity应助DIUI采纳,获得10
48秒前
研友_VZG7GZ应助lucas采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560339
求助须知:如何正确求助?哪些是违规求助? 4645494
关于积分的说明 14675277
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915