Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy

医学 无线电技术 磁共振成像 三阴性乳腺癌 乳腺癌 放射科 单变量 接收机工作特性 乳房磁振造影 癌症 多元统计 内科学 机器学习 乳腺摄影术 计算机科学
作者
Mingming Ma,Liangyu Gan,Yinhua Liu,Yuan Jiang,Ling Xin,Yi Liu,Naishan Qin,Yuanjia Cheng,Qian Liu,Ling Xu,Yaofeng Zhang,Xiangpeng Wang,Xiaodong Zhang,Jingming Ye,Xiaoying Wang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:146: 110095-110095 被引量:33
标识
DOI:10.1016/j.ejrad.2021.110095
摘要

To establish radiomics prediction models based on automatic segmented magnetic resonance imaging (MRI) for predicting the systemic recurrence of triple-negative breast cancer (TNBC) in patients after neoadjuvant chemotherapy (NAC).A total of 147 patients with TNBC who underwent NAC between January 2009 and December 2018 were enrolled in this study. Clinicopathologic data were collected, and the differences between the recurrent and nonrecurrent patients were analyzed by univariate and multivariate analyses. Patients were randomly divided into training and testing sets. The training set consisted of 104 patients (recurrence: 22, nonrecurrence: 82), and the testing set consisted of 43 patients (recurrence: 9, nonrecurrence: 34). To establish the radiomics prediction model, we used a deep learning segmentation model to automatically segment tumor areas on dynamiccontrast-enhanced-MRI images of pre- and post-NAC magnetic resonance examinations. Radiomics features were then extracted from the tumor areas. Three MRI radiomics models were developed in the training set: a radiomics model based on pre-NAC MRI features (model 1), a radiomics model based on post-NAC MRI features (model 2), and a radiomics model based on both pre- and post-NAC MRI features (model 3). A clinical model for predicting systemic recurrence was built in the training set using independent clinical prediction factors. Receiver operating characteristic curve analysis was used to evaluate the performance of the radiomics and clinical models.The clinical model yielded areas under the curve (AUCs) of 0.747 in the training set and 0.737 in the testing set in terms of predicting systemic recurrence. Models 1, 2, and 3 yielded AUCs of 0.879, 0.91, and 0.963 in the training set and 0.814, 0.802, and 0.933 in the testing set, respectively, in terms of predicting systemic recurrence. All of the radiomics models had achieved higher AUCs than the clinical model in the testing set. DeLong test was used to compare the AUCs between the models and indicated that the predictive performance of model 3 was better than the clinical model, and the difference was statistically significant (p < 0.05).The radiomics models built based on the combination of pre- and post-NAC MRI features showed good performance in predicting whether patients with TNBC will have systemic recurrence within 3 years post-NAC. This can help us non-invasively identify which patients are at high risk of recurrence post-NAC, so that we can strengthen follow-up and treatment of these patients. Then the prognosis of these patients might be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zn应助111采纳,获得10
1秒前
舒适静丹完成签到,获得积分10
2秒前
丽颖发布了新的文献求助10
3秒前
cui完成签到,获得积分10
3秒前
lixm完成签到,获得积分10
3秒前
yyyyy语言完成签到,获得积分10
3秒前
栗子完成签到,获得积分10
4秒前
卧镁铀钳完成签到 ,获得积分10
5秒前
DHL完成签到,获得积分10
6秒前
TT发布了新的文献求助10
6秒前
小蘑菇应助科研通管家采纳,获得30
7秒前
terence应助科研通管家采纳,获得30
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Akim应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
8秒前
害怕的小玉完成签到,获得积分10
8秒前
9秒前
12秒前
梦里花落知多少完成签到,获得积分10
12秒前
13秒前
阳阳发布了新的文献求助10
13秒前
Poyd发布了新的文献求助10
15秒前
开开完成签到,获得积分10
15秒前
tao_blue发布了新的文献求助10
16秒前
16秒前
888完成签到,获得积分10
16秒前
饭神仙鱼完成签到,获得积分10
17秒前
KBYer发布了新的文献求助20
17秒前
Jzhang应助tmpstlml采纳,获得10
18秒前
YoYo发布了新的文献求助10
18秒前
豌豆发布了新的文献求助10
20秒前
21秒前
言叶完成签到,获得积分10
21秒前
22秒前
CipherSage应助清新的冷松采纳,获得10
22秒前
JamesPei应助Poyd采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849