Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO<sub>2</sub> Cathode for Aqueous Rechargeable Zinc Batteries

阴极 水溶液 材料科学 纳米技术 化学工程 无机化学 化学 冶金 工程类 物理化学
作者
Xianhong Chen,Pengchao Ruan,Xianwen Wu,Shuquan Liang,Jiang Zhou
出处
期刊:Acta Physico-chimica Sinica [Peking University Press]
卷期号:: 2111003- 被引量:39
标识
DOI:10.3866/pku.whxb202111003
摘要

Abstract: Because of the advantages of high safety, environment-friendliness, affordability, and ease of processing, aqueous rechargeable zinc batteries (ARZBs) are promising candidates for next-generation large-scale energy storage systems. In recent years, various cathode materials based on vanadium/manganese/cobalt oxides, Prussian blue analogs, and organic compounds have been reported. Among them, manganese dioxide (MnO2) is widely used in ARZBs due to their outstanding advantages of low toxicity, eco-friendliness, and high capacity (616 mAh·g-1 based on two-electron transfer). However, the diversity of the crystal structures of MnO2 and the unpredictability of the electrochemical reaction make it difficult to investigate the specific internal storage mechanism, which impedes further development of the optimal modification strategies. To date, the main recognized energy storage mechanisms are (de)intercalation and dissolution-deposition mechanisms. In the traditional (de)intercalation mechanism, the predominant issues related to MnO2 during the cycling process include Mn dissolution, irreversible phase transformation, structural collapse, and sluggish ion diffusion kinetics. On the other hand, the detailed reaction path for the dissolution-deposition mechanism, which was developed in recent years, remains controversial. In addition, the incomplete dissolution-deposition of MnO2 and the highly acidic environment inevitably leads to corrosion and hydrogen evolution of the zinc anode, as well as low Coulombic efficiency. Accordingly, optimization strategies for different reaction mechanisms have been proposed to make zinc-manganese batteries more competitive. For the (de)intercalation mechanism, modification of composite materials and nanostructure optimization strategies can be adopted to inhibit the dissolution of MnO2 and increase the number of highly active reaction sites, thus enhancing the electrochemical performance. Moreover, the guest pre-intercalation strategy can help optimize the crystal structure of MnO2, preventing the collapse of the internal structure during cycling. Besides, defect engineering and element doping strategies focus on regulating the distribution of the electronic structure for affecting the properties of MnO2, resulting in lowering the energy barrier of zinc insertion. For the dissolution-deposition mechanism, the introduction of a neutral acetate and a halide mediator can effectively facilitate the dissolution-deposition of MnO2. Meanwhile, metal element catalysis can accelerate the reaction kinetics of the MnO2 dissolution-deposition, so that high-rate performance can be achieved. Furthermore, the decoupling battery system can separate the cathodic and anodic electrolytes to restrain the hydrogen and oxygen evolution reactions and enhance the potential difference. The flow battery system can effectively eliminate the influence of concentration polarization and stabilize the ion concentration in the electrolytes, thus leading to a large capacity (>100 mAh). Undoubtedly, MnO2 as a high-capacity, high-voltage cathode material has broad development prospects for ARZBs. Here, we systematically summarize the crystal structures and reaction mechanisms of MnO2. We also discuss the optimization strategies toward advanced MnO2 cathode materials for resolving the highlighted issues in zinc-manganese batteries, which are expected to provide research directions for the design and development of high-performance ARZBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
campus完成签到,获得积分10
刚刚
刚刚
LHZ发布了新的文献求助10
刚刚
含糊的立轩完成签到,获得积分10
1秒前
LLL完成签到,获得积分10
1秒前
笑笑关注了科研通微信公众号
2秒前
x1981完成签到,获得积分10
2秒前
POLLY发布了新的文献求助10
2秒前
贪玩的书包完成签到,获得积分10
3秒前
直率的钢铁侠完成签到,获得积分10
4秒前
4秒前
Akim应助Li采纳,获得10
5秒前
科研通AI2S应助0美团外卖0采纳,获得10
5秒前
5秒前
zby2完成签到,获得积分10
5秒前
春春完成签到,获得积分10
6秒前
装满阳光的橘子完成签到,获得积分10
7秒前
pqy关闭了pqy文献求助
7秒前
田様应助犹豫的觅云采纳,获得10
7秒前
dsfgbh发布了新的文献求助10
8秒前
感到蔚蓝完成签到,获得积分10
8秒前
ajun完成签到,获得积分10
8秒前
Snow完成签到 ,获得积分10
8秒前
meiyugao发布了新的文献求助10
9秒前
年小年完成签到,获得积分10
9秒前
自信谷冬完成签到,获得积分10
10秒前
Sallxy完成签到 ,获得积分10
10秒前
11秒前
11秒前
anna1992发布了新的文献求助10
11秒前
POLLY完成签到 ,获得积分10
12秒前
Jasper应助鲸鱼采纳,获得10
12秒前
12秒前
CAIJING完成签到,获得积分10
12秒前
深情安青应助研友_Zbb4mZ采纳,获得10
13秒前
姜汁完成签到,获得积分10
13秒前
666完成签到,获得积分20
13秒前
玖文完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635