Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO<sub>2</sub> Cathode for Aqueous Rechargeable Zinc Batteries

阴极 水溶液 材料科学 纳米技术 化学工程 无机化学 化学 冶金 工程类 物理化学
作者
Xianhong Chen,Pengchao Ruan,Xianwen Wu,Shuquan Liang,Jiang Zhou
出处
期刊:Acta Physico-chimica Sinica [Acta Physico-Chimica Sinica & University Chemistry Editorial Office, Peking University]
卷期号:: 2111003- 被引量:33
标识
DOI:10.3866/pku.whxb202111003
摘要

Abstract: Because of the advantages of high safety, environment-friendliness, affordability, and ease of processing, aqueous rechargeable zinc batteries (ARZBs) are promising candidates for next-generation large-scale energy storage systems. In recent years, various cathode materials based on vanadium/manganese/cobalt oxides, Prussian blue analogs, and organic compounds have been reported. Among them, manganese dioxide (MnO2) is widely used in ARZBs due to their outstanding advantages of low toxicity, eco-friendliness, and high capacity (616 mAh·g-1 based on two-electron transfer). However, the diversity of the crystal structures of MnO2 and the unpredictability of the electrochemical reaction make it difficult to investigate the specific internal storage mechanism, which impedes further development of the optimal modification strategies. To date, the main recognized energy storage mechanisms are (de)intercalation and dissolution-deposition mechanisms. In the traditional (de)intercalation mechanism, the predominant issues related to MnO2 during the cycling process include Mn dissolution, irreversible phase transformation, structural collapse, and sluggish ion diffusion kinetics. On the other hand, the detailed reaction path for the dissolution-deposition mechanism, which was developed in recent years, remains controversial. In addition, the incomplete dissolution-deposition of MnO2 and the highly acidic environment inevitably leads to corrosion and hydrogen evolution of the zinc anode, as well as low Coulombic efficiency. Accordingly, optimization strategies for different reaction mechanisms have been proposed to make zinc-manganese batteries more competitive. For the (de)intercalation mechanism, modification of composite materials and nanostructure optimization strategies can be adopted to inhibit the dissolution of MnO2 and increase the number of highly active reaction sites, thus enhancing the electrochemical performance. Moreover, the guest pre-intercalation strategy can help optimize the crystal structure of MnO2, preventing the collapse of the internal structure during cycling. Besides, defect engineering and element doping strategies focus on regulating the distribution of the electronic structure for affecting the properties of MnO2, resulting in lowering the energy barrier of zinc insertion. For the dissolution-deposition mechanism, the introduction of a neutral acetate and a halide mediator can effectively facilitate the dissolution-deposition of MnO2. Meanwhile, metal element catalysis can accelerate the reaction kinetics of the MnO2 dissolution-deposition, so that high-rate performance can be achieved. Furthermore, the decoupling battery system can separate the cathodic and anodic electrolytes to restrain the hydrogen and oxygen evolution reactions and enhance the potential difference. The flow battery system can effectively eliminate the influence of concentration polarization and stabilize the ion concentration in the electrolytes, thus leading to a large capacity (>100 mAh). Undoubtedly, MnO2 as a high-capacity, high-voltage cathode material has broad development prospects for ARZBs. Here, we systematically summarize the crystal structures and reaction mechanisms of MnO2. We also discuss the optimization strategies toward advanced MnO2 cathode materials for resolving the highlighted issues in zinc-manganese batteries, which are expected to provide research directions for the design and development of high-performance ARZBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
常常完成签到 ,获得积分10
刚刚
汉堡包应助牛1采纳,获得10
刚刚
酷波er应助欧阳铭采纳,获得10
1秒前
南风不竞发布了新的文献求助10
2秒前
枵疋发布了新的文献求助100
2秒前
科研通AI2S应助满意的初南采纳,获得10
2秒前
Alice完成签到,获得积分10
2秒前
2秒前
3秒前
无花果应助羊念烟采纳,获得10
4秒前
木耳驳回了Ava应助
4秒前
王大锤发布了新的文献求助10
4秒前
5秒前
5秒前
捷克完成签到,获得积分10
5秒前
5秒前
enterdawn应助kerio采纳,获得10
8秒前
Hello应助qiuzhiqi采纳,获得10
8秒前
Zer完成签到,获得积分10
8秒前
knn发布了新的文献求助10
8秒前
魏某某完成签到 ,获得积分10
9秒前
爱学习的小王完成签到,获得积分10
9秒前
Kyrie发布了新的文献求助10
9秒前
Jason完成签到 ,获得积分10
10秒前
LH关闭了LH文献求助
10秒前
华仔应助汪汪采纳,获得10
10秒前
小Z完成签到 ,获得积分10
11秒前
桐桐应助TL采纳,获得10
11秒前
领导范儿应助wu61采纳,获得10
11秒前
国启发布了新的文献求助10
11秒前
12秒前
似是而非应助鹿777采纳,获得15
14秒前
星辰大海应助CHENDQ采纳,获得30
14秒前
15秒前
15秒前
15秒前
仲乔妹完成签到,获得积分10
16秒前
ding应助愤怒的不二采纳,获得10
17秒前
研友_VZG7GZ应助小土采纳,获得10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
美国体育史 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259528
求助须知:如何正确求助?哪些是违规求助? 2901148
关于积分的说明 8314112
捐赠科研通 2570492
什么是DOI,文献DOI怎么找? 1396557
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631633