Hardness prediction of high entropy alloys with machine learning and material descriptors selection by improved genetic algorithm

特征选择 计算机科学 遗传算法 算法 熵(时间箭头) 人工智能 理论(学习稳定性) 机器学习 特征(语言学) 堆积 选择(遗传算法) 材料科学 化学 热力学 物理 哲学 语言学 有机化学
作者
Shuai Li,Shu Li,Dongrong Liu,Rui Zou,Zhiyuan Yang
出处
期刊:Computational Materials Science [Elsevier]
卷期号:205: 111185-111185 被引量:49
标识
DOI:10.1016/j.commatsci.2022.111185
摘要

With the coming of the age of artificial intelligence and big data, machine learning (ML) has been showing powerful potentials for properties prediction of materials. For achieving satisfying prediction performance, rational feature selection plays a key role along with a suitable ML model itself. In the present work, the traditional genetic algorithm (GA) has been further improved to serve as a feature selection method for the hardness prediction problem of high entropy alloys (HEAs). The concepts of feature importance and gene manipulation were introduced into the improved GA to make it more comprehensible. Comparative analysis demonstrated that the improved GA is superior to the traditional GA in the aspects of accuracy, stability and efficiency obviously. A comparison with other typical feature selection methods was also made. In addition, ML model selection was discussed with the composition feature or the optimal physical feature combination selected by the improved GA. Finally, in order to elevate the prediction ability of ML model, the stacking method as an ensemble learning strategy was proposed in Al-Co-Cr-Cu-Fe-Ni HEAs hardness prediction. It was shown that the prediction errors are successfully lowered. This ML framework could be regarded as a method with general applicability to select suitable ML model and material descriptors, for designing various materials with excellent properties and complex composition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
独特不斜完成签到,获得积分10
4秒前
4秒前
4秒前
孜然西瓜完成签到,获得积分10
5秒前
6秒前
橙子发布了新的文献求助10
8秒前
10秒前
zhentg完成签到,获得积分0
10秒前
LARS应助wsh采纳,获得10
11秒前
英俊的铭应助呆萌藏鸟采纳,获得10
12秒前
傢誠发布了新的文献求助10
13秒前
兴奋笑天完成签到 ,获得积分10
14秒前
糊涂的炳完成签到,获得积分10
15秒前
舒庆春完成签到,获得积分10
18秒前
mei完成签到,获得积分10
19秒前
冯婷完成签到 ,获得积分10
22秒前
24秒前
任性迎南完成签到,获得积分10
25秒前
传奇3应助温暖幻桃采纳,获得10
26秒前
Li完成签到,获得积分10
26秒前
Neuro_dan完成签到,获得积分10
28秒前
isabellae完成签到,获得积分10
28秒前
唠叨的宝马完成签到,获得积分10
28秒前
无花果应助兴奋笑天采纳,获得10
31秒前
jiao完成签到,获得积分10
31秒前
32秒前
livresse完成签到,获得积分10
34秒前
鱿鱼炒黄瓜完成签到,获得积分10
35秒前
房东家的猫完成签到,获得积分10
37秒前
碧蓝恶天完成签到,获得积分10
37秒前
xuhan发布了新的文献求助10
38秒前
Myx完成签到,获得积分10
38秒前
panda完成签到,获得积分20
39秒前
guolina完成签到 ,获得积分10
40秒前
40秒前
科研通AI2S应助rsaorestoaerstn采纳,获得10
41秒前
41秒前
研友_xLOMQZ完成签到,获得积分10
42秒前
42秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159845
求助须知:如何正确求助?哪些是违规求助? 2810777
关于积分的说明 7889428
捐赠科研通 2469877
什么是DOI,文献DOI怎么找? 1315131
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012