计算机科学
代谢组学
原始数据
一致性(知识库)
数据挖掘
源代码
质量(理念)
数据质量
软件
数据库
生物信息学
人工智能
公制(单位)
生物
操作系统
哲学
运营管理
认识论
经济
程序设计语言
作者
Yonghui Dong,Yana Kazachkova,Meng Gou,Liat Morgan,Tal Wachsman,Ehud Gazit,Rune Isak Dupont Birkler
出处
期刊:Bioinformatics
[Oxford University Press]
日期:2022-01-24
卷期号:38 (7): 2072-2074
被引量:11
标识
DOI:10.1093/bioinformatics/btac040
摘要
Abstract Motivation Robust and reproducible data is essential to ensure high-quality analytical results and is particularly important for large-scale metabolomics studies where detector sensitivity drifts, retention time and mass accuracy shifts frequently occur. Therefore, raw data need to be inspected before data processing to detect measurement bias and verify system consistency. Results Here, we present RawHummus, an R Shiny app for an automated raw data quality control (QC) in metabolomics studies. It produces a comprehensive QC report, which contains interactive plots and tables, summary statistics and detailed explanations. The versatility and limitations of RawHummus are tested with 13 metabolomics/lipidomics datasets and 1 proteomics dataset obtained from 5 different liquid chromatography mass spectrometry platforms. Availability and implementation RawHummus is released on CRAN repository (https://cran.r-project.org/web/packages/RawHummus), with source code being available on GitHub (https://github.com/YonghuiDong/RawHummus). The web application can be executed locally from the R console using the command ‘runGui()’. Alternatively, it can be freely accessed at https://bcdd.shinyapps.io/RawHummus/. Supplementary information Supplementary data are available at Bioinformatics online.
科研通智能强力驱动
Strongly Powered by AbleSci AI