PathAL: An Active Learning Framework for Histopathology Image Analysis

计算机科学 人工智能 卷积神经网络 一般化 集合(抽象数据类型) 样品(材料) 模式识别(心理学) 机器学习 启发式 图像(数学) 注释 人工神经网络 数学 数学分析 化学 色谱法 程序设计语言
作者
Wenyuan Li,Jiayun Li,Zichen Wang,Jennifer Polson,Anthony Sisk,Dipti P. Sajed,William Speier,Corey Arnold
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (5): 1176-1187 被引量:19
标识
DOI:10.1109/tmi.2021.3135002
摘要

Deep neural networks, in particular convolutional networks, have rapidly become a popular choice for analyzing histopathology images. However, training these models relies heavily on a large number of samples manually annotated by experts, which is cumbersome and expensive. In addition, it is difficult to obtain a perfect set of labels due to the variability between expert annotations. This paper presents a novel active learning (AL) framework for histopathology image analysis, named PathAL. To reduce the required number of expert annotations, PathAL selects two groups of unlabeled data in each training iteration: one "informative" sample that requires additional expert annotation, and one "confident predictive" sample that is automatically added to the training set using the model's pseudo-labels. To reduce the impact of the noisy-labeled samples in the training set, PathAL systematically identifies noisy samples and excludes them to improve the generalization of the model. Our model advances the existing AL method for medical image analysis in two ways. First, we present a selection strategy to improve classification performance with fewer manual annotations. Unlike traditional methods focusing only on finding the most uncertain samples with low prediction confidence, we discover a large number of high confidence samples from the unlabeled set and automatically add them for training with assigned pseudo-labels. Second, we design a method to distinguish between noisy samples and hard samples using a heuristic approach. We exclude the noisy samples while preserving the hard samples to improve model performance. Extensive experiments demonstrate that our proposed PathAL framework achieves promising results on a prostate cancer Gleason grading task, obtaining similar performance with 40% fewer annotations compared to the fully supervised learning scenario. An ablation study is provided to analyze the effectiveness of each component in PathAL, and a pathologist reader study is conducted to validate our proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小鱼儿完成签到,获得积分10
1秒前
我是老大应助wwt采纳,获得10
1秒前
威武冷雪发布了新的文献求助50
1秒前
hhh2018687发布了新的文献求助10
1秒前
大模型应助马上毕业采纳,获得10
1秒前
Preseverance完成签到,获得积分10
2秒前
小洪包完成签到,获得积分10
2秒前
严泰完成签到,获得积分10
2秒前
2秒前
李健的小迷弟应助。.。采纳,获得10
3秒前
旸里完成签到,获得积分10
3秒前
怡然平凡发布了新的文献求助10
3秒前
快乐的伟诚完成签到,获得积分10
4秒前
大模型应助lmy9988采纳,获得10
4秒前
rabbitsang完成签到,获得积分10
5秒前
5秒前
wanci应助你是我的唯一采纳,获得10
5秒前
遇鲸还潮完成签到,获得积分10
6秒前
dh完成签到,获得积分10
7秒前
7秒前
金刚芭比容嬷嬷完成签到,获得积分20
7秒前
Athnolay完成签到 ,获得积分10
8秒前
8秒前
8秒前
MQY完成签到,获得积分10
10秒前
10秒前
12秒前
12秒前
修仙应助百里浩宇采纳,获得10
12秒前
独特芷巧发布了新的文献求助10
13秒前
14秒前
yk完成签到 ,获得积分10
15秒前
16秒前
。.。发布了新的文献求助10
17秒前
17秒前
不想学习的大香蕉完成签到,获得积分10
17秒前
cloud完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242959
求助须知:如何正确求助?哪些是违规求助? 2887078
关于积分的说明 8246118
捐赠科研通 2555624
什么是DOI,文献DOI怎么找? 1383762
科研通“疑难数据库(出版商)”最低求助积分说明 649745
邀请新用户注册赠送积分活动 625625