已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantitative in vitro to in vivo extrapolation for developmental toxicity potency of valproic acid analogues

体内 基于生理学的药代动力学模型 发育毒性 药理学 毒性 IVIVC公司 效力 体外 丙戊酸 化学 药代动力学 体外毒理学 生物 生物化学 胎儿 有机化学 溶解试验 神经科学 生物技术 癫痫 怀孕 遗传学 生物制药分类系统
作者
Xiaoqing Chang,Jessica Palmer,Un Jung Lee,Patricia Ceger,Kamel Mansouri,Catherine S. Sprankle,Shannon Bell,John F. Wambaugh,David Allen,Nicole Kleinstreuer
出处
期刊:Teratology [Wiley]
卷期号:114 (16): 1037-1055 被引量:4
标识
DOI:10.1002/bdr2.2019
摘要

Abstract Background The developmental toxicity potential (dTP) concentration from the devTOX quick Predict (devTOX qP ) assay, a metabolomics‐based human induced pluripotent stem cell assay, predicts a chemical's developmental toxicity potency. Here, in vitro to in vivo extrapolation (IVIVE) approaches were applied to address whether the devTOX qP assay could quantitatively predict in vivo developmental toxicity lowest effect levels (LELs) for the prototypical teratogen valproic acid (VPA) and a group of structural analogues. Methods VPA and a series of structural analogues were tested with the devTOX qP assay to determine dTP concentration and we estimated the equivalent administered doses (EADs) that would lead to plasma concentrations equivalent to the in vitro dTP concentrations. The EADs were compared to the LELs in rat developmental toxicity studies, human clinical doses, and EADs reported using other in vitro assays. To evaluate the impact of different pharmacokinetic (PK) models on IVIVE outcomes, we compared EADs predicted using various open‐source and commercially available PK and physiologically based PK (PBPK) models. To evaluate the effect of in vitro kinetics, an equilibrium distribution model was applied to translate dTP concentrations to free medium concentrations before subsequent IVIVE analyses. Results The EAD estimates for the VPA analogues based on different PK/PBPK models were quantitatively similar to in vivo data from both rats and humans, where available, and the derived rank order of the chemicals was consistent with observed in vivo developmental toxicity. Different models were identified that provided accurate predictions for rat prenatal LELs and conservative estimates of human safe exposure. The impact of in vitro kinetics on EAD estimates is chemical‐dependent. EADs from this study were within range of predicted doses from other in vitro and model organism data. Conclusions This study highlights the importance of pharmacokinetic considerations when using in vitro assays and demonstrates the utility of the devTOX qP human stem cell‐based platform to quantitatively assess a chemical's developmental toxicity potency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LeaF发布了新的文献求助30
2秒前
感冒药完成签到 ,获得积分10
4秒前
shame完成签到 ,获得积分10
7秒前
黄树明发布了新的文献求助10
7秒前
Rn完成签到 ,获得积分0
7秒前
香蕉觅云应助GDL采纳,获得10
8秒前
dadabad完成签到 ,获得积分10
11秒前
毛舒敏完成签到 ,获得积分10
12秒前
swimming完成签到 ,获得积分10
14秒前
阿南完成签到 ,获得积分10
15秒前
19秒前
爆米花应助黄树明采纳,获得10
20秒前
Fxy完成签到 ,获得积分10
22秒前
abc乐荷发布了新的文献求助10
23秒前
23秒前
25秒前
丘比特应助阳胜军采纳,获得10
26秒前
quzhenzxxx完成签到 ,获得积分10
27秒前
喵喵发布了新的文献求助10
28秒前
29秒前
我不是哪吒完成签到 ,获得积分10
29秒前
奋斗的朋友完成签到 ,获得积分10
33秒前
34秒前
Ren完成签到 ,获得积分10
35秒前
Zyc完成签到 ,获得积分10
35秒前
喵喵完成签到,获得积分10
36秒前
郭子仪发布了新的文献求助10
37秒前
gzwhh发布了新的文献求助10
38秒前
Yingkun_Xu完成签到,获得积分10
40秒前
abc乐荷完成签到,获得积分10
41秒前
如愿常隐行完成签到 ,获得积分10
42秒前
zh123完成签到,获得积分10
43秒前
董小妍完成签到 ,获得积分10
47秒前
Owen应助gzwhh采纳,获得30
53秒前
郭子仪完成签到,获得积分10
53秒前
大模型应助不安的鸡翅采纳,获得10
55秒前
完美世界应助呆萌的亦竹采纳,获得10
56秒前
57秒前
58秒前
大帅比完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714084
求助须知:如何正确求助?哪些是违规求助? 5220378
关于积分的说明 15272661
捐赠科研通 4865670
什么是DOI,文献DOI怎么找? 2612250
邀请新用户注册赠送积分活动 1562416
关于科研通互助平台的介绍 1519611