亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mining and summarizing customer reviews

自动汇总 产品(数学) 计算机科学 任务(项目管理) 情绪分析 判决 万维网 客户的声音 数据科学 情报检索 质量(理念) 聚类分析 客户情报 人工智能 工程类 几何学 数学 系统工程
作者
Minqing Hu,Bing Liu
出处
期刊:Knowledge Discovery and Data Mining 被引量:5697
标识
DOI:10.1145/1014052.1014073
摘要

Merchants selling products on the Web often ask their customers to review the products that they have purchased and the associated services. As e-commerce is becoming more and more popular, the number of customer reviews that a product receives grows rapidly. For a popular product, the number of reviews can be in hundreds or even thousands. This makes it difficult for a potential customer to read them to make an informed decision on whether to purchase the product. It also makes it difficult for the manufacturer of the product to keep track and to manage customer opinions. For the manufacturer, there are additional difficulties because many merchant sites may sell the same product and the manufacturer normally produces many kinds of products. In this research, we aim to mine and to summarize all the customer reviews of a product. This summarization task is different from traditional text summarization because we only mine the features of the product on which the customers have expressed their opinions and whether the opinions are positive or negative. We do not summarize the reviews by selecting a subset or rewrite some of the original sentences from the reviews to capture the main points as in the classic text summarization. Our task is performed in three steps: (1) mining product features that have been commented on by customers; (2) identifying opinion sentences in each review and deciding whether each opinion sentence is positive or negative; (3) summarizing the results. This paper proposes several novel techniques to perform these tasks. Our experimental results using reviews of a number of products sold online demonstrate the effectiveness of the techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
23秒前
MhanM发布了新的文献求助20
28秒前
世隐发布了新的文献求助10
29秒前
Jyuanh完成签到,获得积分10
49秒前
50秒前
缪尔岚完成签到,获得积分10
57秒前
天天快乐应助Reny采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
吾系渣渣辉完成签到 ,获得积分10
1分钟前
兔葵燕麦完成签到 ,获得积分10
1分钟前
1分钟前
Reny发布了新的文献求助10
1分钟前
momo发布了新的文献求助10
1分钟前
CipherSage应助Reny采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
努力加油煤老八完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
汉堡包应助兼听则明采纳,获得10
2分钟前
MhanM完成签到,获得积分10
2分钟前
ddd完成签到,获得积分10
2分钟前
2分钟前
边曦完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
3分钟前
cessy完成签到,获得积分10
3分钟前
3分钟前
充电宝应助周冬华采纳,获得10
3分钟前
大方易巧完成签到 ,获得积分10
3分钟前
3分钟前
一只橘子完成签到 ,获得积分10
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413361
求助须知:如何正确求助?哪些是违规求助? 3015651
关于积分的说明 8871610
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482234
科研通“疑难数据库(出版商)”最低求助积分说明 685159
邀请新用户注册赠送积分活动 679944