Mining and summarizing customer reviews

自动汇总 产品(数学) 计算机科学 任务(项目管理) 情绪分析 判决 万维网 客户的声音 数据科学 情报检索 质量(理念) 聚类分析 客户情报 人工智能 工程类 几何学 数学 系统工程
作者
Minqing Hu,Bing Liu
出处
期刊:Knowledge Discovery and Data Mining 被引量:5697
标识
DOI:10.1145/1014052.1014073
摘要

Merchants selling products on the Web often ask their customers to review the products that they have purchased and the associated services. As e-commerce is becoming more and more popular, the number of customer reviews that a product receives grows rapidly. For a popular product, the number of reviews can be in hundreds or even thousands. This makes it difficult for a potential customer to read them to make an informed decision on whether to purchase the product. It also makes it difficult for the manufacturer of the product to keep track and to manage customer opinions. For the manufacturer, there are additional difficulties because many merchant sites may sell the same product and the manufacturer normally produces many kinds of products. In this research, we aim to mine and to summarize all the customer reviews of a product. This summarization task is different from traditional text summarization because we only mine the features of the product on which the customers have expressed their opinions and whether the opinions are positive or negative. We do not summarize the reviews by selecting a subset or rewrite some of the original sentences from the reviews to capture the main points as in the classic text summarization. Our task is performed in three steps: (1) mining product features that have been commented on by customers; (2) identifying opinion sentences in each review and deciding whether each opinion sentence is positive or negative; (3) summarizing the results. This paper proposes several novel techniques to perform these tasks. Our experimental results using reviews of a number of products sold online demonstrate the effectiveness of the techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘芷珊发布了新的文献求助10
刚刚
chris发布了新的文献求助10
1秒前
阿泽完成签到,获得积分10
1秒前
fle发布了新的文献求助10
1秒前
任性凤凰完成签到,获得积分10
1秒前
2秒前
共享精神应助A2QD采纳,获得10
3秒前
123发布了新的文献求助10
6秒前
7秒前
8秒前
10秒前
PhD_Lee73发布了新的文献求助30
12秒前
任性凤凰发布了新的文献求助10
13秒前
小马甲应助theforth采纳,获得10
13秒前
easternliu完成签到,获得积分10
14秒前
14秒前
14秒前
数学自动化完成签到,获得积分10
16秒前
18秒前
cc4ever完成签到,获得积分10
18秒前
Lyon发布了新的文献求助10
18秒前
上官若男应助tt采纳,获得10
20秒前
123完成签到,获得积分10
22秒前
24秒前
24秒前
骆十八发布了新的文献求助30
24秒前
田様应助酷酷巧蟹采纳,获得10
24秒前
Akim应助chris采纳,获得10
25秒前
25秒前
25秒前
Lee完成签到,获得积分10
26秒前
郭晋安完成签到,获得积分10
26秒前
Liufgui应助个性的尔阳采纳,获得10
27秒前
28秒前
yuaasusanaann发布了新的文献求助10
28秒前
宋阳完成签到,获得积分10
30秒前
CC发布了新的文献求助10
30秒前
章章发布了新的文献求助10
30秒前
lys发布了新的文献求助10
31秒前
franca2005完成签到 ,获得积分10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999546
求助须知:如何正确求助?哪些是违规求助? 3539008
关于积分的说明 11275620
捐赠科研通 3277833
什么是DOI,文献DOI怎么找? 1807725
邀请新用户注册赠送积分活动 884127
科研通“疑难数据库(出版商)”最低求助积分说明 810142