独特性
数学
弱解
欧米茄
班级(哲学)
数学分析
空格(标点符号)
原始方程
初值问题
纯数学
物理
联立方程组
微分方程
计算机科学
量子力学
人工智能
操作系统
作者
Jinkai Li,Edriss S. Titi
出处
期刊:Cornell University - arXiv
日期:2015-01-01
被引量:4
标识
DOI:10.48550/arxiv.1512.00700
摘要
We establish some conditional uniqueness of weak solutions to the viscous primitive equations, and as an application, we prove the global existence and uniqueness of weak solutions, with the initial data taken as small $L^\infty$ perturbations of functions in the space $X=\left\{v\in (L^6(\Omega))^2|\partial_zv\in (L^2(\Omega))^2\right\}$; in particular, the initial data are allowed to be discontinuous. Our result generalizes in a uniform way the result on the uniqueness of weak solutions with continuous initial data and that of the so-called $z$-weak solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI