Convective flow reversal in self-powered enzyme micropumps

流体学 微流控 浮力 流体力学 流量(数学) 机械 基质(水族馆) 化学 生物系统 纳米技术 材料科学 物理 工程类 地质学 航空航天工程 海洋学 生物
作者
Isamar Ortiz‐Rivera,Henry Shum,Arjun Agrawal,Ayusman Sen,Anna C. Balazs
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:113 (10): 2585-2590 被引量:82
标识
DOI:10.1073/pnas.1517908113
摘要

Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=D(P)/D(S) and expansion coefficients β=β(P)/β(S) of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δ<1 and δ<β ), an unexpected phenomenon arises: the flow direction reverses with time and distance from the pump. Our experimental results are in qualitative agreement with the model and show that both the speed and direction of fluid pumping (i) depend on the enzyme activity and coverage, (ii) vary with the distance from the pump, and (iii) evolve with time. These findings permit the rational design of enzymatic pumps that accurately control the direction and speed of fluid flow without external power sources, enabling effective, self-powered fluidic devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溜溜溜完成签到 ,获得积分10
刚刚
luobeimin发布了新的文献求助10
刚刚
茵茵完成签到,获得积分10
刚刚
激动的凡桃完成签到,获得积分10
1秒前
1秒前
小冬瓜发布了新的文献求助10
2秒前
QIQI完成签到,获得积分10
3秒前
3秒前
3秒前
zp6666tql完成签到 ,获得积分10
3秒前
Lance先生完成签到,获得积分10
4秒前
白日梦想家2028完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
Jrusha完成签到,获得积分10
5秒前
cxl95发布了新的文献求助10
6秒前
怕黑的凡蕾完成签到,获得积分10
6秒前
7秒前
7秒前
Ava应助100采纳,获得10
8秒前
雨墨幻山完成签到,获得积分10
8秒前
cyf完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
Galaxy发布了新的文献求助10
11秒前
刘大恒发布了新的文献求助20
12秒前
aaaa完成签到 ,获得积分10
13秒前
13秒前
13秒前
紫荆完成签到 ,获得积分10
14秒前
东日完成签到,获得积分10
14秒前
云淡风轻发布了新的文献求助10
14秒前
明亮沅发布了新的文献求助10
15秒前
Jasper应助历史真相采纳,获得10
16秒前
angelsknight完成签到,获得积分10
16秒前
彭于晏应助小冬瓜采纳,获得10
16秒前
17秒前
闪闪水云完成签到,获得积分10
17秒前
伟@发布了新的文献求助10
17秒前
18秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662686
求助须知:如何正确求助?哪些是违规求助? 3223486
关于积分的说明 9751938
捐赠科研通 2933388
什么是DOI,文献DOI怎么找? 1606071
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734756