清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Promoting Effect of Amino on Enhancing Cycling Performance at Low Temperatures for Li-S Battery Cathodes

电解质 阴极 电池(电) 多硫化物 溶解 化学 锂(药物) 电极 碳纤维 硫黄 化学工程 材料科学 无机化学 复合材料 有机化学 物理化学 热力学 复合数 工程类 内分泌学 物理 功率(物理) 医学
作者
Shaoyin Zhu,Yongcheng Jin
出处
期刊:Meeting abstracts 卷期号:MA2016-03 (2): 760-760
标识
DOI:10.1149/ma2016-03/2/760
摘要

Comparing to lots of research on electrical performance at room temperature for lithium-sulfur (Li-S) batteries, the low-temperature behaviors of cathodes is outside the scope of concern. The amino group was reported to be a promising candidate to suppress the shuttle through the effective chemisorptions between amino and polysulfides. Herein, we demonstrate an amino-functionalized carbon materials deriving from polyimide wastes. The prepared sulfur cathode ( PI-AC-56 ) displays better low-temperature cycle performance. As shown in Fig. 1a, an obvious difference of the discharge voltage profiles at the 100 th cycle was displayed for two prepared cathodes. In contrast to AC-50 cathode, the typical two-voltage plateaus were displayed for PI-AC-56 cathode at the 100 th cycle. As we know, the long-chain polysulfides could easily dissolve into the electrolyte for Li-S battery at room temperature. As reducing the temperature, the viscosity of electrolyte would increase to some extent. And the electrolyte viscosity would further increase following with the dissolution of polysulfide anion to the electrolyte, which would significantly block the migration rate of lithium ion. The further reduction reaction of polysulfides to insolvable discharge products was stemmed. Thus, the low-voltage plateau mainly controlled by the thermodynamics process disappeared for AC-50 electrode and the utilization efficiency of active material also decreased. In reverse, the presence of amino group on surface of carbon material for PI-AC-56 electrode confines the polysulfides dissolution to the electrolyte by the favourable interactions between polysulfides and amino group, which prevents the further increase of electrolyte viscosity to ensure an appropriate migration rate of lithium ion. This insured further reduction reaction for long-chain discharge products. On the other hand, the amino group also insured a homogenous distribution of insoluble discharge products due to the strong interaction between unpaired electrons in the N atom and Li + in the Li 2 S, which can prevent the formation of electrochemically inactive large agglomerates. As shown in Fig. 1b, with comparation of AC-50 cathode, better cycle performance and capacity retention were also achieved for PI-AC-56 electrode. The capacity of 368 mAh g -1 after 100 cycles was retained from PI-AC-56 cathode, which was better than the only capacity of 115 mAh g -1 for AC-50 cathode. And with the increase of cycle numbers, the discharge capacity increased gradually first and then decreased, indicating that an activation process was necessary for PI-AC-56 electrode. CVs results of PI-AC-56 electrode only show a strong reduction peak at 2.31 V (vs Li/Li + ) before cycle (Fig. 1c), which was also attributed to the transformation from elemental sulfur (S 8 ) to long-chain lithium polysulfides. In addition to the weak reduction peaks at 2.11 V (vs Li/Li + ), another weak reduction peak was observed at about 1.7 V (vs Li/Li + ). These two peaks were corresponding to the further reduction reaction of long-chain polysulfides. The similar phenomenon was also obtained for AC-50 cathode at the initial cycle. The difference between the first reduction peak and oxidation peak for PI-AC-56 was smaller than that of AC-50 cathode, indicating the smaller electrode polar for PI-AC-56 electrode. After 100 cycles, an obvious difference was displayed from the CVs curves. A new strong reduction peak relate to the further polysulfide reduction at 1.96 V (vs Li/Li + ) appeared for PI-AC-56 electrode, which was corresponding to the presence of low-voltage plateau. Although the similar results also were displayed for AC-50 electrode (Fig. 1d), the whole peak intensity of AC-50 was smaller than that of PI-AC-56 electrode. This result also revealed a fact that the total cell resistance of PI-AC-56 electrode was significantly smaller comparing to AC-50 cathode. These results confirm the positive effect of amino group on improving cycle performance by restricting dissolution of polysulfide to the electrolyte. The electron-donating effect of amino group is favourable to enhancing the reactivity of aromatic carbon rings for sulfur loading by the formation of ammonium polysulphides. Additionally, the lone-pair electrons denoted by the amino group could interact with lithium sulphides by coordination with Li atom. Working together, better cycle performance at different temperatures was achieved by the amino-functionalization. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助Dongjie采纳,获得10
1秒前
11秒前
Luke发布了新的文献求助10
16秒前
21秒前
邱佩群完成签到 ,获得积分10
34秒前
小蘑菇应助Luke采纳,获得10
37秒前
练得身形似鹤形完成签到 ,获得积分10
41秒前
46秒前
卜哥完成签到,获得积分10
46秒前
guoguo1119完成签到 ,获得积分10
49秒前
moxiang发布了新的文献求助10
50秒前
乐正怡完成签到 ,获得积分0
53秒前
Chelsea完成签到,获得积分10
54秒前
56秒前
英姑应助moxiang采纳,获得10
56秒前
58秒前
Mia233完成签到 ,获得积分10
1分钟前
Dongjie发布了新的文献求助10
1分钟前
Luke发布了新的文献求助10
1分钟前
喵了个咪完成签到 ,获得积分10
1分钟前
小二郎应助Luke采纳,获得10
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
1分钟前
Luke发布了新的文献求助10
1分钟前
小糊涂完成签到 ,获得积分10
1分钟前
dx完成签到,获得积分10
1分钟前
debu9完成签到,获得积分10
1分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
锅架了完成签到 ,获得积分10
2分钟前
雪酪芋泥球完成签到 ,获得积分10
2分钟前
甜乎贝贝完成签到 ,获得积分0
2分钟前
BINBIN完成签到 ,获得积分10
3分钟前
要减肥的土豆完成签到,获得积分10
3分钟前
3分钟前
lingling完成签到 ,获得积分10
3分钟前
俞若枫发布了新的文献求助10
3分钟前
3分钟前
3分钟前
HHM完成签到,获得积分10
3分钟前
yindi1991完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645003
求助须知:如何正确求助?哪些是违规求助? 4766938
关于积分的说明 15026102
捐赠科研通 4803370
什么是DOI,文献DOI怎么找? 2568271
邀请新用户注册赠送积分活动 1525661
关于科研通互助平台的介绍 1485212