Vehicle crash accident reconstruction based on the analysis 3D deformation of the auto-body

耐撞性 撞车 人工神经网络 有限元法 碰撞 变形(气象学) 过程(计算) 工程类 计算机科学 碰撞试验 结构工程 模拟 人工智能 物理 气象学 程序设计语言 计算机安全 操作系统
作者
Xiao Yun Zhang,Xian Jin,QI Wen-guo,Yong Guo
出处
期刊:Advances in Engineering Software [Elsevier]
卷期号:39 (6): 459-465 被引量:48
标识
DOI:10.1016/j.advengsoft.2007.05.002
摘要

The objective of vehicle crash accident reconstruction is to investigate the pre-impact velocity. Elastic–plastic deformation of the vehicle and the collision objects are the important information produced during vehicle crash accidents, and the information can be fully utilized based on the finite element method (FEM), which has been widely used as simulation tools for crashworthiness analyses and structural optimization design. However, the FEM is not becoming popular in accident reconstruction because it needs lots of crash simulation cycles and the FE models are getting bigger, which increases the simulation time and cost. The use of neural networks as global approximation tool in accident reconstruction is here investigated. Neural networks are used to map the relation between the initial crash parameter and deformation, which can reduce the simulation cycles apparently. The inputs and outputs of the artificial neural networks (ANN) for the training process are obtained by explicit finite element analyses performed by LS-DYNA. The procedure is applied to a typical traffic accident as a validation. The deformation of the key points on the frontal longitudinal beam and the mudguard could be measured according to the simulation results. These results could be used to train the neural networks adapted back-propagation learning rule. The pre-impact velocity could be got by the trained neural networks, which can provide a scientific foundation for accident judgments and can be used for vehicle accidents without tire marks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大松子完成签到,获得积分10
1秒前
流萤完成签到 ,获得积分10
1秒前
火星上蜗牛完成签到 ,获得积分10
1秒前
正文完成签到,获得积分10
2秒前
蔚山小猫完成签到,获得积分10
2秒前
啵噜噜噜啊完成签到,获得积分10
2秒前
2秒前
幽默的志泽完成签到,获得积分10
2秒前
jianyulv发布了新的文献求助10
3秒前
香蕉觅云应助wenbin采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
上官若男应助阿吟采纳,获得10
4秒前
积极纲发布了新的文献求助10
4秒前
眼睛大傲之完成签到,获得积分10
4秒前
无花果应助火星上的冬云采纳,获得10
4秒前
pepperlight完成签到 ,获得积分10
4秒前
5秒前
慕青应助樱桃采纳,获得10
5秒前
hull完成签到,获得积分10
5秒前
哈哈哈发布了新的文献求助10
6秒前
CodeCraft应助lyy采纳,获得10
6秒前
7秒前
QiLe完成签到,获得积分10
7秒前
领导范儿应助lizhiqian2024采纳,获得10
7秒前
starlx0813完成签到,获得积分10
7秒前
congjia完成签到,获得积分10
7秒前
王晓完成签到,获得积分10
7秒前
缥缈傥发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
顾矜应助张金鹏采纳,获得10
8秒前
123发布了新的文献求助10
8秒前
AI孙燕姿完成签到,获得积分10
8秒前
8秒前
十月完成签到,获得积分10
9秒前
yier完成签到,获得积分10
9秒前
jsl完成签到,获得积分10
9秒前
研友_ZGAWYL完成签到,获得积分10
9秒前
橘子海完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665118
求助须知:如何正确求助?哪些是违规求助? 4875227
关于积分的说明 15112135
捐赠科研通 4824320
什么是DOI,文献DOI怎么找? 2582694
邀请新用户注册赠送积分活动 1536665
关于科研通互助平台的介绍 1495279