Vehicle crash accident reconstruction based on the analysis 3D deformation of the auto-body

耐撞性 撞车 人工神经网络 有限元法 碰撞 变形(气象学) 过程(计算) 工程类 计算机科学 碰撞试验 结构工程 模拟 人工智能 操作系统 物理 计算机安全 气象学 程序设计语言
作者
Xiao Yun Zhang,Xian Jin,QI Wen-guo,Yong Guo
出处
期刊:Advances in Engineering Software [Elsevier]
卷期号:39 (6): 459-465 被引量:48
标识
DOI:10.1016/j.advengsoft.2007.05.002
摘要

The objective of vehicle crash accident reconstruction is to investigate the pre-impact velocity. Elastic–plastic deformation of the vehicle and the collision objects are the important information produced during vehicle crash accidents, and the information can be fully utilized based on the finite element method (FEM), which has been widely used as simulation tools for crashworthiness analyses and structural optimization design. However, the FEM is not becoming popular in accident reconstruction because it needs lots of crash simulation cycles and the FE models are getting bigger, which increases the simulation time and cost. The use of neural networks as global approximation tool in accident reconstruction is here investigated. Neural networks are used to map the relation between the initial crash parameter and deformation, which can reduce the simulation cycles apparently. The inputs and outputs of the artificial neural networks (ANN) for the training process are obtained by explicit finite element analyses performed by LS-DYNA. The procedure is applied to a typical traffic accident as a validation. The deformation of the key points on the frontal longitudinal beam and the mudguard could be measured according to the simulation results. These results could be used to train the neural networks adapted back-propagation learning rule. The pre-impact velocity could be got by the trained neural networks, which can provide a scientific foundation for accident judgments and can be used for vehicle accidents without tire marks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LL完成签到,获得积分10
2秒前
平平发布了新的文献求助10
2秒前
ding应助单纯采纳,获得30
2秒前
丹丹发布了新的文献求助10
2秒前
浅颂驳回了shimmy应助
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
苏小安发布了新的文献求助10
4秒前
bkagyin应助Phoo采纳,获得10
4秒前
深情安青应助肖邦采纳,获得10
4秒前
昏睡的嵩应助历史真相采纳,获得10
5秒前
李萌萌发布了新的文献求助10
5秒前
5秒前
简单小土豆完成签到 ,获得积分10
5秒前
充电宝应助illuminate采纳,获得10
5秒前
科研通AI6.1应助qiu采纳,获得10
6秒前
7秒前
xiao完成签到,获得积分10
7秒前
研友_8Wz5MZ发布了新的文献求助10
7秒前
NexusExplorer应助wubangze采纳,获得10
7秒前
8秒前
不不完成签到,获得积分10
8秒前
科研通AI6.1应助龙叶静采纳,获得30
8秒前
辛勤长颈鹿完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
ziguang完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
万能图书馆应助ff采纳,获得10
10秒前
橙子发布了新的文献求助10
11秒前
11秒前
12秒前
ziguang发布了新的文献求助30
13秒前
开心完成签到,获得积分10
13秒前
sdas完成签到,获得积分10
13秒前
Ava应助自然卷的春天采纳,获得10
14秒前
芬栀发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106