亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Operando Observation of Zinc Negative Electrode Using Confocal Optical System and X-Ray Diffraction

电极 材料科学 同步加速器 共焦 衍射 电池(电) 降级(电信) 光学 分析化学(期刊) 光电子学 化学 计算机科学 物理 冶金 量子力学 电信 物理化学 功率(物理) 色谱法
作者
Atsunori Ikezawa,Masato Horiuchi,Hajime Arai
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (2): 175-175
标识
DOI:10.1149/ma2020-022175mtgabs
摘要

Alkaline secondary batteries using zinc negative electrodes are attractive candidates for large-scale energy storage systems since they potentially satisfy low cost, high safety standard and high energy density. However, the short cycle life of the zinc electrodes hinders their practical applications. To overcome this problem, it is necessary to understand the degradation mechanism. In this work, we applied the combination of operando confocal optical system and operando x-ray diffraction (XRD) to alkaline zinc electrode systems to investigate the mechanism of the degradation from the physical and the chemical points of view. Operando confocal optical system is a confocal-optics-based microscopy system that enables acquisition of all-in-focus high definition color image on uneven surface by vertical scanning of observation surface. It also enables time-resolved observation of morphological and color change of electrodes during charge-discharge cycle by periodical scanning. We previously applied this to lithium-ion battery systems and successfully visualized local reaction distribution.[1] Since the morphological change and the local reaction distribution mainly cause the degradation of zinc electrode[2], the operando confocal optical system possibly supplies important information about the degradation mechanism. On the other hand, it is difficult to analyze the chemical properties with the optical system. To compensate the chemical aspect, we also carried out operando XRD. Nakata et al. applied operando synchrotron XRD to zinc electrode systems and successfully quantified ZnO and Zn phases.[2] In this work, we expanded synchrotron XRD into laboratory XRD, which has higher versatility and higher availability. The optical measurements and the XRD were separately employed with a confocal optical system (ECCS, Lasertec) and XRD system (SmartLab, Rigaku), respectively, but the same electrochemical cell and operating conditions were applied. The electrochemical cell consists of ZnO composite electrode filled in Cu foam (working electrode), Hg|HgO electrode (reference electrode), Zn wire (counter electrode), poly(propylene) film (observation window) and 1.0 and 4.0 mol dm –3 KOH solutions saturated (sat’d) with ZnO (electrolyte solution). Figure (a), (b) shows parts of operando confocal optical images and operando XRD patterns of the cross-section of the ZnO composite electrodes in 1.0 and 4.0 mol dm –3 KOH solutions sat’d with ZnO. Zn deposited to form clusters at around the Cu current collectors at the charge in 4.0 mol dm –3 KOH sat’d with ZnO while relatively uniform Zn deposition was observed at the charge in 1.0 mol dm –3 KOH sat’d with ZnO. The diffraction pattern of ZnO was hardly observed after the discharge in 4.0 mol dm –3 KOH sat’d with ZnO. In contrast, ZnO110 peak was clearly observed and bluish blacked deposition was uniformly observed in the optical image after the discharge in 1.0 mol dm –3 KOH sat’d with ZnO. Charge-discharge measurements using three-electrode full-cells with Ni(OH) 2 counter electrodes showed that the ZnO composite electrode in 1.0 mol dm –3 KOH exhibited about 4 times longer cycle life than that in 4.0 mol dm –3 KOH. These results indicated that higher solubility of [Zn(OH) 4 ] 2– in 4.0 mol dm –3 KOH caused local deposition of Zn and ZnO followed by the degradation due to the shape change. References [1] H. Arai et al., ECS. Meet. Abstr. , MA2019-03 , 241 (2019). [2] F.R. McLarnon te al., J. Electrochem. Soc. , 138 , 645 (1991). [3] A. Nakata et al., Electrochim. Acta , 166 , 82 (2015). Acknowledgments This study was partially supported by NEDO, Japan. The confocal optical study was supported by Lasertec Corporation, Japan. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LOKL完成签到,获得积分10
7秒前
wanci应助我能读懂文献采纳,获得10
8秒前
9秒前
花凉完成签到,获得积分10
13秒前
14秒前
自由怀梦完成签到,获得积分10
14秒前
花凉发布了新的文献求助10
15秒前
26秒前
念辰发布了新的文献求助10
30秒前
32秒前
34秒前
banbieshenlu完成签到,获得积分10
34秒前
懒洋洋发布了新的文献求助10
39秒前
yq发布了新的文献求助30
47秒前
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
1分钟前
1分钟前
有趣的银发布了新的文献求助10
1分钟前
念辰关注了科研通微信公众号
1分钟前
1分钟前
阿芙乐尔发布了新的文献求助10
1分钟前
yiban完成签到 ,获得积分10
2分钟前
2分钟前
zyj发布了新的文献求助10
2分钟前
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助zyj采纳,获得10
2分钟前
uto完成签到,获得积分10
2分钟前
3分钟前
vicky发布了新的文献求助10
3分钟前
懒洋洋发布了新的文献求助10
3分钟前
3分钟前
耶风完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232655
求助须知:如何正确求助?哪些是违规求助? 4401931
关于积分的说明 13699464
捐赠科研通 4268321
什么是DOI,文献DOI怎么找? 2342519
邀请新用户注册赠送积分活动 1339526
关于科研通互助平台的介绍 1296223