Operando Observation of Zinc Negative Electrode Using Confocal Optical System and X-Ray Diffraction

电极 材料科学 同步加速器 共焦 衍射 电池(电) 降级(电信) 光学 分析化学(期刊) 光电子学 化学 计算机科学 物理 冶金 量子力学 电信 物理化学 功率(物理) 色谱法
作者
Atsunori Ikezawa,Masato Horiuchi,Hajime Arai
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (2): 175-175
标识
DOI:10.1149/ma2020-022175mtgabs
摘要

Alkaline secondary batteries using zinc negative electrodes are attractive candidates for large-scale energy storage systems since they potentially satisfy low cost, high safety standard and high energy density. However, the short cycle life of the zinc electrodes hinders their practical applications. To overcome this problem, it is necessary to understand the degradation mechanism. In this work, we applied the combination of operando confocal optical system and operando x-ray diffraction (XRD) to alkaline zinc electrode systems to investigate the mechanism of the degradation from the physical and the chemical points of view. Operando confocal optical system is a confocal-optics-based microscopy system that enables acquisition of all-in-focus high definition color image on uneven surface by vertical scanning of observation surface. It also enables time-resolved observation of morphological and color change of electrodes during charge-discharge cycle by periodical scanning. We previously applied this to lithium-ion battery systems and successfully visualized local reaction distribution.[1] Since the morphological change and the local reaction distribution mainly cause the degradation of zinc electrode[2], the operando confocal optical system possibly supplies important information about the degradation mechanism. On the other hand, it is difficult to analyze the chemical properties with the optical system. To compensate the chemical aspect, we also carried out operando XRD. Nakata et al. applied operando synchrotron XRD to zinc electrode systems and successfully quantified ZnO and Zn phases.[2] In this work, we expanded synchrotron XRD into laboratory XRD, which has higher versatility and higher availability. The optical measurements and the XRD were separately employed with a confocal optical system (ECCS, Lasertec) and XRD system (SmartLab, Rigaku), respectively, but the same electrochemical cell and operating conditions were applied. The electrochemical cell consists of ZnO composite electrode filled in Cu foam (working electrode), Hg|HgO electrode (reference electrode), Zn wire (counter electrode), poly(propylene) film (observation window) and 1.0 and 4.0 mol dm –3 KOH solutions saturated (sat’d) with ZnO (electrolyte solution). Figure (a), (b) shows parts of operando confocal optical images and operando XRD patterns of the cross-section of the ZnO composite electrodes in 1.0 and 4.0 mol dm –3 KOH solutions sat’d with ZnO. Zn deposited to form clusters at around the Cu current collectors at the charge in 4.0 mol dm –3 KOH sat’d with ZnO while relatively uniform Zn deposition was observed at the charge in 1.0 mol dm –3 KOH sat’d with ZnO. The diffraction pattern of ZnO was hardly observed after the discharge in 4.0 mol dm –3 KOH sat’d with ZnO. In contrast, ZnO110 peak was clearly observed and bluish blacked deposition was uniformly observed in the optical image after the discharge in 1.0 mol dm –3 KOH sat’d with ZnO. Charge-discharge measurements using three-electrode full-cells with Ni(OH) 2 counter electrodes showed that the ZnO composite electrode in 1.0 mol dm –3 KOH exhibited about 4 times longer cycle life than that in 4.0 mol dm –3 KOH. These results indicated that higher solubility of [Zn(OH) 4 ] 2– in 4.0 mol dm –3 KOH caused local deposition of Zn and ZnO followed by the degradation due to the shape change. References [1] H. Arai et al., ECS. Meet. Abstr. , MA2019-03 , 241 (2019). [2] F.R. McLarnon te al., J. Electrochem. Soc. , 138 , 645 (1991). [3] A. Nakata et al., Electrochim. Acta , 166 , 82 (2015). Acknowledgments This study was partially supported by NEDO, Japan. The confocal optical study was supported by Lasertec Corporation, Japan. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的匪完成签到 ,获得积分10
刚刚
桐桐应助时尚的初珍采纳,获得10
刚刚
hi应助mumu采纳,获得10
2秒前
3秒前
科目三应助gsdrv采纳,获得10
3秒前
舒屿望迷发布了新的文献求助10
4秒前
易安完成签到,获得积分10
5秒前
5秒前
ZYC发布了新的文献求助10
5秒前
6秒前
田田完成签到 ,获得积分10
6秒前
锤子米发布了新的文献求助10
7秒前
呆萌的完成签到,获得积分10
8秒前
靓丽的飞槐完成签到,获得积分10
8秒前
8秒前
xu完成签到,获得积分10
8秒前
9秒前
9秒前
西瓜完成签到,获得积分10
9秒前
Alioth完成签到,获得积分20
9秒前
kk发布了新的文献求助10
10秒前
10秒前
小七发布了新的文献求助10
10秒前
黑粉头头发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助30
11秒前
Hello应助皮崇知采纳,获得10
11秒前
12秒前
白白完成签到,获得积分10
12秒前
12秒前
佳佳应助沉静小萱采纳,获得10
13秒前
velpro发布了新的文献求助10
13秒前
303发布了新的文献求助10
13秒前
现代的访曼应助玛卡巴卡采纳,获得20
14秒前
14秒前
情怀应助kk采纳,获得10
14秒前
SUO发布了新的文献求助10
16秒前
16秒前
科研通AI2S应助999999采纳,获得10
16秒前
gsdrv发布了新的文献求助10
17秒前
QWERT应助sfdghik采纳,获得30
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958563
求助须知:如何正确求助?哪些是违规求助? 3504871
关于积分的说明 11120709
捐赠科研通 3236153
什么是DOI,文献DOI怎么找? 1788666
邀请新用户注册赠送积分活动 871279
科研通“疑难数据库(出版商)”最低求助积分说明 802646