亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Operando Observation of Zinc Negative Electrode Using Confocal Optical System and X-Ray Diffraction

电极 材料科学 同步加速器 共焦 衍射 电池(电) 降级(电信) 光学 分析化学(期刊) 光电子学 化学 计算机科学 物理 冶金 量子力学 电信 物理化学 功率(物理) 色谱法
作者
Atsunori Ikezawa,Masato Horiuchi,Hajime Arai
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (2): 175-175
标识
DOI:10.1149/ma2020-022175mtgabs
摘要

Alkaline secondary batteries using zinc negative electrodes are attractive candidates for large-scale energy storage systems since they potentially satisfy low cost, high safety standard and high energy density. However, the short cycle life of the zinc electrodes hinders their practical applications. To overcome this problem, it is necessary to understand the degradation mechanism. In this work, we applied the combination of operando confocal optical system and operando x-ray diffraction (XRD) to alkaline zinc electrode systems to investigate the mechanism of the degradation from the physical and the chemical points of view. Operando confocal optical system is a confocal-optics-based microscopy system that enables acquisition of all-in-focus high definition color image on uneven surface by vertical scanning of observation surface. It also enables time-resolved observation of morphological and color change of electrodes during charge-discharge cycle by periodical scanning. We previously applied this to lithium-ion battery systems and successfully visualized local reaction distribution.[1] Since the morphological change and the local reaction distribution mainly cause the degradation of zinc electrode[2], the operando confocal optical system possibly supplies important information about the degradation mechanism. On the other hand, it is difficult to analyze the chemical properties with the optical system. To compensate the chemical aspect, we also carried out operando XRD. Nakata et al. applied operando synchrotron XRD to zinc electrode systems and successfully quantified ZnO and Zn phases.[2] In this work, we expanded synchrotron XRD into laboratory XRD, which has higher versatility and higher availability. The optical measurements and the XRD were separately employed with a confocal optical system (ECCS, Lasertec) and XRD system (SmartLab, Rigaku), respectively, but the same electrochemical cell and operating conditions were applied. The electrochemical cell consists of ZnO composite electrode filled in Cu foam (working electrode), Hg|HgO electrode (reference electrode), Zn wire (counter electrode), poly(propylene) film (observation window) and 1.0 and 4.0 mol dm –3 KOH solutions saturated (sat’d) with ZnO (electrolyte solution). Figure (a), (b) shows parts of operando confocal optical images and operando XRD patterns of the cross-section of the ZnO composite electrodes in 1.0 and 4.0 mol dm –3 KOH solutions sat’d with ZnO. Zn deposited to form clusters at around the Cu current collectors at the charge in 4.0 mol dm –3 KOH sat’d with ZnO while relatively uniform Zn deposition was observed at the charge in 1.0 mol dm –3 KOH sat’d with ZnO. The diffraction pattern of ZnO was hardly observed after the discharge in 4.0 mol dm –3 KOH sat’d with ZnO. In contrast, ZnO110 peak was clearly observed and bluish blacked deposition was uniformly observed in the optical image after the discharge in 1.0 mol dm –3 KOH sat’d with ZnO. Charge-discharge measurements using three-electrode full-cells with Ni(OH) 2 counter electrodes showed that the ZnO composite electrode in 1.0 mol dm –3 KOH exhibited about 4 times longer cycle life than that in 4.0 mol dm –3 KOH. These results indicated that higher solubility of [Zn(OH) 4 ] 2– in 4.0 mol dm –3 KOH caused local deposition of Zn and ZnO followed by the degradation due to the shape change. References [1] H. Arai et al., ECS. Meet. Abstr. , MA2019-03 , 241 (2019). [2] F.R. McLarnon te al., J. Electrochem. Soc. , 138 , 645 (1991). [3] A. Nakata et al., Electrochim. Acta , 166 , 82 (2015). Acknowledgments This study was partially supported by NEDO, Japan. The confocal optical study was supported by Lasertec Corporation, Japan. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
量子星尘发布了新的文献求助10
19秒前
khan完成签到,获得积分10
20秒前
khan发布了新的文献求助10
34秒前
李娇完成签到 ,获得积分10
41秒前
45秒前
lhy完成签到,获得积分10
45秒前
47秒前
喜滋滋发布了新的文献求助10
50秒前
喜滋滋完成签到,获得积分10
59秒前
1分钟前
慕青应助paul采纳,获得10
1分钟前
1分钟前
love454106发布了新的文献求助10
1分钟前
love454106完成签到,获得积分10
2分钟前
2分钟前
酒渡完成签到,获得积分10
2分钟前
Gryphon完成签到,获得积分10
2分钟前
2分钟前
Duffy_Z发布了新的文献求助10
2分钟前
宅心仁厚完成签到 ,获得积分10
2分钟前
xxxrass完成签到 ,获得积分10
3分钟前
123完成签到,获得积分10
3分钟前
3分钟前
George完成签到,获得积分10
3分钟前
3分钟前
4分钟前
开心可乐不脆皮完成签到,获得积分10
4分钟前
4分钟前
Stone发布了新的文献求助10
4分钟前
sdjtxdy发布了新的文献求助10
4分钟前
4分钟前
4分钟前
paul发布了新的文献求助10
4分钟前
活泼的机器猫完成签到,获得积分10
4分钟前
chenlc971125完成签到 ,获得积分10
4分钟前
房天川完成签到 ,获得积分10
5分钟前
Stone发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910003
求助须知:如何正确求助?哪些是违规求助? 4186025
关于积分的说明 12998953
捐赠科研通 3953278
什么是DOI,文献DOI怎么找? 2167856
邀请新用户注册赠送积分活动 1186313
关于科研通互助平台的介绍 1093293