Operando Observation of Zinc Negative Electrode Using Confocal Optical System and X-Ray Diffraction

电极 材料科学 同步加速器 共焦 衍射 电池(电) 降级(电信) 光学 分析化学(期刊) 光电子学 化学 计算机科学 物理 冶金 量子力学 电信 物理化学 功率(物理) 色谱法
作者
Atsunori Ikezawa,Masato Horiuchi,Hajime Arai
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (2): 175-175
标识
DOI:10.1149/ma2020-022175mtgabs
摘要

Alkaline secondary batteries using zinc negative electrodes are attractive candidates for large-scale energy storage systems since they potentially satisfy low cost, high safety standard and high energy density. However, the short cycle life of the zinc electrodes hinders their practical applications. To overcome this problem, it is necessary to understand the degradation mechanism. In this work, we applied the combination of operando confocal optical system and operando x-ray diffraction (XRD) to alkaline zinc electrode systems to investigate the mechanism of the degradation from the physical and the chemical points of view. Operando confocal optical system is a confocal-optics-based microscopy system that enables acquisition of all-in-focus high definition color image on uneven surface by vertical scanning of observation surface. It also enables time-resolved observation of morphological and color change of electrodes during charge-discharge cycle by periodical scanning. We previously applied this to lithium-ion battery systems and successfully visualized local reaction distribution.[1] Since the morphological change and the local reaction distribution mainly cause the degradation of zinc electrode[2], the operando confocal optical system possibly supplies important information about the degradation mechanism. On the other hand, it is difficult to analyze the chemical properties with the optical system. To compensate the chemical aspect, we also carried out operando XRD. Nakata et al. applied operando synchrotron XRD to zinc electrode systems and successfully quantified ZnO and Zn phases.[2] In this work, we expanded synchrotron XRD into laboratory XRD, which has higher versatility and higher availability. The optical measurements and the XRD were separately employed with a confocal optical system (ECCS, Lasertec) and XRD system (SmartLab, Rigaku), respectively, but the same electrochemical cell and operating conditions were applied. The electrochemical cell consists of ZnO composite electrode filled in Cu foam (working electrode), Hg|HgO electrode (reference electrode), Zn wire (counter electrode), poly(propylene) film (observation window) and 1.0 and 4.0 mol dm –3 KOH solutions saturated (sat’d) with ZnO (electrolyte solution). Figure (a), (b) shows parts of operando confocal optical images and operando XRD patterns of the cross-section of the ZnO composite electrodes in 1.0 and 4.0 mol dm –3 KOH solutions sat’d with ZnO. Zn deposited to form clusters at around the Cu current collectors at the charge in 4.0 mol dm –3 KOH sat’d with ZnO while relatively uniform Zn deposition was observed at the charge in 1.0 mol dm –3 KOH sat’d with ZnO. The diffraction pattern of ZnO was hardly observed after the discharge in 4.0 mol dm –3 KOH sat’d with ZnO. In contrast, ZnO110 peak was clearly observed and bluish blacked deposition was uniformly observed in the optical image after the discharge in 1.0 mol dm –3 KOH sat’d with ZnO. Charge-discharge measurements using three-electrode full-cells with Ni(OH) 2 counter electrodes showed that the ZnO composite electrode in 1.0 mol dm –3 KOH exhibited about 4 times longer cycle life than that in 4.0 mol dm –3 KOH. These results indicated that higher solubility of [Zn(OH) 4 ] 2– in 4.0 mol dm –3 KOH caused local deposition of Zn and ZnO followed by the degradation due to the shape change. References [1] H. Arai et al., ECS. Meet. Abstr. , MA2019-03 , 241 (2019). [2] F.R. McLarnon te al., J. Electrochem. Soc. , 138 , 645 (1991). [3] A. Nakata et al., Electrochim. Acta , 166 , 82 (2015). Acknowledgments This study was partially supported by NEDO, Japan. The confocal optical study was supported by Lasertec Corporation, Japan. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝壳发布了新的文献求助10
刚刚
士多啤梨完成签到 ,获得积分10
刚刚
阳光完成签到,获得积分10
刚刚
悦耳静枫完成签到,获得积分10
刚刚
1秒前
方方发布了新的文献求助10
1秒前
1秒前
诸觅双发布了新的文献求助10
2秒前
time完成签到,获得积分10
3秒前
热心的信封完成签到,获得积分10
3秒前
宇文三德发布了新的文献求助30
5秒前
zz发布了新的文献求助10
6秒前
6秒前
打工人完成签到,获得积分10
6秒前
隐形曼青应助fouli采纳,获得10
9秒前
123456发布了新的文献求助10
10秒前
艾米完成签到,获得积分10
11秒前
小二郎完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
13秒前
科目三应助肉肉采纳,获得10
13秒前
13秒前
13秒前
WHH发布了新的文献求助20
13秒前
keke发布了新的文献求助10
14秒前
美好芷波发布了新的文献求助20
15秒前
15秒前
所所应助shmily采纳,获得10
15秒前
Singularity应助九九九采纳,获得10
15秒前
科研通AI2S应助九九九采纳,获得10
15秒前
15秒前
个性的紫菜应助安可瓶子采纳,获得10
16秒前
云飞扬发布了新的文献求助10
16秒前
jin发布了新的文献求助10
16秒前
16秒前
17秒前
皮卡丘发布了新的文献求助20
17秒前
汉堡包应助Stormi采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145597
求助须知:如何正确求助?哪些是违规求助? 2797033
关于积分的说明 7822546
捐赠科研通 2453369
什么是DOI,文献DOI怎么找? 1305607
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601464