镜头(地质)
计算机科学
模块化设计
人工神经网络
光学(聚焦)
深度学习
人工智能
点(几何)
工具箱
补语(音乐)
光学
基因
操作系统
物理
表型
生物化学
化学
互补
数学
程序设计语言
几何学
作者
Geoffroi Côté,Jean‐François Lalonde,Simon Thibault
出处
期刊:Optics Express
[The Optical Society]
日期:2021-01-08
卷期号:29 (3): 3841-3841
被引量:45
摘要
We present a simple, highly modular deep neural network (DNN) framework to address the problem of automatically inferring lens design starting points tailored to the desired specifications. In contrast to previous work, our model can handle various and complex lens structures suitable for real-world problems such as Cooke Triplets or Double Gauss lenses. Our successfully trained dynamic model can infer lens designs with realistic glass materials whose optical performance compares favorably to reference designs from the literature on 80 different lens structures. Using our trained model as a backbone, we make available to the community a web application that outputs a selection of varied, high-quality starting points directly from the desired specifications, which we believe will complement any lens designer’s toolbox.
科研通智能强力驱动
Strongly Powered by AbleSci AI