玻璃
建筑工程
气凝胶
高效能源利用
可靠性(半导体)
太阳增益
零能耗建筑
能源性能
过程(计算)
计算机科学
工程类
机械工程
工艺工程
太阳能
土木工程
电气工程
功率(物理)
物理
量子力学
化学工程
操作系统
作者
Cinzia Buratti,Elisa Belloni,Francesca Merli,Michele Zinzi
标识
DOI:10.1016/j.enbuild.2020.110587
摘要
A comprehensive review of aerogel glazing systems is provided, focusing on the main properties of interest in building applications. Both granular and monolithic forms are taken into account, even if only the former is available on the market. Reviewed studies regard the material itself and of the assembled glazing systems are analysed. After a short description of the fabrication process, thermal and optical properties are presented, in order to provide a set of useful data on the most important parameters affecting energy and lighting performance of buildings. Not-energy related aspects, as quality of lighting and acoustic properties are also investigated, being relevant for the successful building integration. Numerical analyses and field studies show the potential of the technology to achieve relevant energy savings with respect to conventional glazing systems, especially in cold dominated climates. Long term performance studies confirm the reliability of the technology, with minor functionality issues to be solved. Costs of aerogel are still considerably higher when compared to conventional glazing units, however the fully developed technology may become competitive with the performance required in a zero energy building perspective.
科研通智能强力驱动
Strongly Powered by AbleSci AI