光学
光电探测器
响应度
物理
带宽(计算)
千兆位
光电子学
计算机科学
电信
作者
Xiao Hu,Dingyi Wu,Honggang Zhang,Weizhong Li,Daigao Chen,Lei Wang,Xi Xiao,Shaohua Yu
出处
期刊:Optics Express
[Optica Publishing Group]
日期:2020-12-03
卷期号:28 (25): 38343-38343
被引量:20
摘要
We experimentally demonstrate a high-speed lateral PIN junction configuration germanium photodetector (Ge-PD) with 4-directional light input. The typical internal responsivity is about 1.23 A/W at 1550 nm with 98% quantum efficiency and dark current 4 nA at 1V reverse-bias voltage. The equivalent circuit model and theoretical 3-dB opto-electrical (OE) bandwidth of Ge-PD are extracted and calculated, respectively. Compared to the conventional lateral PIN Ge-PD with 1-directional light input, our proposed device features uniform optical field distribution in the absorption region, which will be benefit to realize high-power and high-speed operation. In particular, in the condition of 0.8 mA photocurrent, the measured 3-dB OE bandwidth is about 17 GHz at bias voltage of -8 V which is well matched to the theoretical estimated bandwidth. With additional digital pre-compensations provided by the Keysight arbitrary waveform generator (AWG), the root raised cosine (RRC) filter and roll-off factor of 0.65 are employed at transmitter (TX) side without utilizing any offline digital signal processing (DSP) at receiver (RX) side. The 50 Gbit/s, 60 Gbit/s, 70 Gbit/s, and 80 Gbit/s non-return-to-zero (NRZ), and 60 Gbit/s, 70 Gbit/s, 80 Gbit/s, and 90 Gbit/s four-level pulse amplitude modulation (PAM-4) clear opening of eye diagrams are realized. In order to verify the high-power handling performance in high-speed data transmission, we also investigate the 20 Gbit/s NRZ eye diagram variations with the increasing of photocurrent.
科研通智能强力驱动
Strongly Powered by AbleSci AI