Coupled Network for Robust Pedestrian Detection With Gated Multi-Layer Feature Extraction and Deformable Occlusion Handling

行人检测 计算机科学 人工智能 特征提取 模式识别(心理学) 卷积神经网络 判别式 特征(语言学) 计算机视觉 探测器 频道(广播) 联营 行人 工程类 运输工程 哲学 电信 语言学 计算机网络
作者
Tianrui Liu,Wenhan Luo,Lin Ma,Junjie Huang,Tania Stathaki,Tianhong Dai
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 754-766 被引量:33
标识
DOI:10.1109/tip.2020.3038371
摘要

Pedestrian detection methods have been significantly improved with the development of deep convolutional neural networks. Nevertheless, detecting ismall-scaled pedestrians and occluded pedestrians remains a challenging problem. In this paper, we propose a pedestrian detection method with a couple-network to simultaneously address these two issues. One of the sub-networks, the gated multi-layer feature extraction sub-network, aims to adaptively generate discriminative features for pedestrian candidates in order to robustly detect pedestrians with large variations on scale. The second sub-network targets on handling the occlusion problem of pedestrian detection by using deformable regional region of interest (RoI)-pooling. We investigate two different gate units for the gated sub-network, namely, the channel-wise gate unit and the spatio-wise gate unit, which can enhance the representation ability of the regional convolutional features among the channel dimensions or across the spatial domain, repetitively. Ablation studies have validated the effectiveness of both the proposed gated multi-layer feature extraction sub-network and the deformable occlusion handling sub-network. With the coupled framework, our proposed pedestrian detector achieves promising results on both two pedestrian datasets, especially on detecting small or occluded pedestrians. On the CityPersons dataset, the proposed detector achieves the lowest missing rates (i.e. 40.78% and 34.60%) on detecting small and occluded pedestrians, surpassing the second best comparison method by 6.0% and 5.87%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
cjjj发布了新的文献求助10
1秒前
CodeCraft应助pbj采纳,获得10
1秒前
mmluo完成签到,获得积分10
1秒前
zhuxiaonian完成签到,获得积分10
1秒前
lenny发布了新的文献求助10
1秒前
1秒前
李多多发布了新的文献求助10
2秒前
资白玉发布了新的文献求助10
2秒前
彭于彦祖应助小巧的半青采纳,获得10
2秒前
喵miao发布了新的文献求助20
2秒前
3秒前
Verbleu发布了新的文献求助30
3秒前
4秒前
科研通AI5应助yoneyamai采纳,获得10
4秒前
5秒前
ytx完成签到,获得积分20
5秒前
韩达大完成签到,获得积分10
5秒前
5秒前
曼曼完成签到,获得积分10
5秒前
choshuenco完成签到,获得积分10
5秒前
lalala发布了新的文献求助10
5秒前
Elena发布了新的文献求助10
6秒前
6秒前
6秒前
科研小谢完成签到,获得积分10
7秒前
熊猫发布了新的文献求助20
7秒前
刚子完成签到,获得积分10
7秒前
7秒前
852应助迅速忆丹采纳,获得10
8秒前
桐桐应助shin0324采纳,获得10
8秒前
SKY完成签到,获得积分10
8秒前
9秒前
科研通AI5应助Laus采纳,获得10
10秒前
柯北发布了新的文献求助10
10秒前
HaHa007发布了新的文献求助10
10秒前
金轩完成签到 ,获得积分10
10秒前
sunny完成签到,获得积分10
11秒前
Singularity应助喵miao采纳,获得20
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735290
求助须知:如何正确求助?哪些是违规求助? 3279275
关于积分的说明 10013771
捐赠科研通 2995856
什么是DOI,文献DOI怎么找? 1643736
邀请新用户注册赠送积分活动 781425
科研通“疑难数据库(出版商)”最低求助积分说明 749387