增采样
人工智能
计算机科学
自编码
卷积神经网络
人工神经网络
插值(计算机图形学)
模式识别(心理学)
计算机视觉
图像分割
算法
分割
图像(数学)
作者
Martin Kolařík,Radim Bürget,Kamil Říha
标识
DOI:10.1109/icumt48472.2019.8970918
摘要
This paper compares nine different upsampling methods used in convolutional neural networks in terms of accuracy and processing speed. The process of image segmentation using autoencoder neural networks consists of the image downsampling in the encoder and correspondingly of image upsampling in the decoder part of the network to achieve original image resolution. This paper focuses on the upsampling process in the decoder part of the standard U-Net neural network. Three different interpolations are compared with and without subsequent lxl convolution layers and three transpose convolution layers for image upsampling using different size convolutional cores. The experiment has shown that the best practical results were achieved using simple nearest neighbor interpolation upsampling taking into consideration the computational time needed. The network using nearest neighbor interpolation upsampling achieved pixel accuracy of 99.47% and has shown fast training time and convergence in comparison with other networks using different upsampling methods. The data used in this work consist of a lumbar CT spine segmentation dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI