生物
计算生物学
细胞
干细胞
细胞分化
鉴定(生物学)
杠杆(统计)
基因
核糖核酸
癌变
发育生物学
进化生物学
基因表达
转录组
遗传学
电池类型
计算机科学
人工智能
植物
作者
Gunsagar S. Gulati,Shaheen S. Sikandar,Daniel J. Wesche,Anoop Manjunath,Anjan Bharadwaj,Mark J. Berger,Francisco Ilagan,Angera H. Kuo,Robert W. Hsieh,Shang Cai,Maider Zabala,Ferenc A. Scheeren,Neethan A. Lobo,Dalong Qian,Feiqiao Brian Yu,Frederick M. Dirbas,Michael F. Clarke,Aaron M. Newman
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2020-01-24
卷期号:367 (6476): 405-411
被引量:663
标识
DOI:10.1126/science.aax0249
摘要
Single-cell RNA sequencing (scRNA-seq) is a powerful approach for reconstructing cellular differentiation trajectories. However, inferring both the state and direction of differentiation is challenging. Here, we demonstrate a simple, yet robust, determinant of developmental potential-the number of expressed genes per cell-and leverage this measure of transcriptional diversity to develop a computational framework (CytoTRACE) for predicting differentiation states from scRNA-seq data. When applied to diverse tissue types and organisms, CytoTRACE outperformed previous methods and nearly 19,000 annotated gene sets for resolving 52 experimentally determined developmental trajectories. Additionally, it facilitated the identification of quiescent stem cells and revealed genes that contribute to breast tumorigenesis. This study thus establishes a key RNA-based feature of developmental potential and a platform for delineation of cellular hierarchies.
科研通智能强力驱动
Strongly Powered by AbleSci AI