Machine learning for lung CT texture analysis: Improvement of inter-observer agreement for radiological finding classification in patients with pulmonary diseases

医学 麦克内马尔试验 放射科 放射性武器 核医学 软件 统计 计算机科学 数学 程序设计语言
作者
Yoshiharu Ohno,Kota Aoyagi,Daisuke Takenaka,Takeshi Yoshikawa,Aina Ikezaki,Yasuko Fujisawa,Kazuhiro Murayama,Hidekazu Hattori,Hiroshi Toyama
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:134: 109410-109410 被引量:22
标识
DOI:10.1016/j.ejrad.2020.109410
摘要

Abstract

Purpose

To evaluate the capability ML-based CT texture analysis for improving interobserver agreement and accuracy of radiological finding assessment in patients with COPD, interstitial lung diseases or infectious diseases.

Materials and methods

Training cases (n = 28), validation cases (n = 17) and test cases (n = 89) who underwent thin-section CT at a 320-detector row CT with wide volume scan and two 64-detector row CTs with helical scan were enrolled in this study. From 89 CT data, a total of 350 computationally selected ROI including normal lung, emphysema, nodular lesion, ground-glass opacity, reticulation and honeycomb were evaluated by three radiologists as well as by the software. Inter-observer agreements between consensus reading with and without using the software or software alone and standard references determined by consensus of pulmonologists and chest radiologists were determined using κ statistics. Overall distinguishing accuracies were compared among all methods by McNemar's test.

Results

Agreements for consensus readings obtained with and without the software or the software alone with standard references were determined as significant and substantial or excellent (with the software: κ = 0.91, p < 0.0001; without the software: κ = 0.81, p < 0.0001; the software alone: κ = 0.79, p < 0.0001). Overall differentiation accuracy of consensus reading using the software (94.9 [332/350] %) was significantly higher than that of consensus reading without using the software (84.3 [295/350] %, p < 0.0001) and the software alone (82.3 [288/350] %, p < 0.0001).

Conclusion

ML-based CT texture analysis software has potential for improving interobserver agreement and accuracy for radiological finding assessments in patients with COPD, interstitial lung diseases or infectious diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的鹏煊完成签到 ,获得积分10
1秒前
1秒前
1秒前
左旋多巴关注了科研通微信公众号
1秒前
luffy完成签到 ,获得积分10
1秒前
仁爱雪晴完成签到,获得积分10
2秒前
3秒前
多金多金完成签到 ,获得积分10
5秒前
刘玲完成签到 ,获得积分10
5秒前
白染完成签到,获得积分20
6秒前
游畅发布了新的文献求助10
6秒前
碎冰蓝完成签到,获得积分10
7秒前
小白发布了新的文献求助10
8秒前
阿坤完成签到,获得积分10
10秒前
10秒前
sunshine完成签到,获得积分10
11秒前
lalala发布了新的文献求助10
17秒前
2589发布了新的文献求助20
17秒前
蜡笔小z完成签到 ,获得积分10
17秒前
leicaixia完成签到 ,获得积分10
20秒前
TRY完成签到,获得积分10
21秒前
21秒前
领导范儿应助雨曦采纳,获得10
21秒前
浮游应助暴富采纳,获得10
21秒前
疑夕完成签到,获得积分10
22秒前
高瑞航完成签到,获得积分10
23秒前
www完成签到,获得积分10
24秒前
勤劳善良的胖蜜蜂完成签到,获得积分10
25秒前
Yh完成签到,获得积分10
25秒前
大胆的白卉完成签到 ,获得积分10
25秒前
时笙完成签到 ,获得积分10
26秒前
复杂惜霜完成签到,获得积分10
27秒前
sdhjad完成签到 ,获得积分10
27秒前
YANA完成签到,获得积分10
28秒前
ganhykk完成签到,获得积分10
29秒前
追寻迎夏完成签到,获得积分10
30秒前
暴富完成签到,获得积分10
31秒前
Csg完成签到,获得积分10
34秒前
某某完成签到 ,获得积分10
35秒前
Mr.Left完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304775
求助须知:如何正确求助?哪些是违规求助? 4451039
关于积分的说明 13850712
捐赠科研通 4338311
什么是DOI,文献DOI怎么找? 2381834
邀请新用户注册赠送积分活动 1376922
关于科研通互助平台的介绍 1344282