Machine learning for lung CT texture analysis: Improvement of inter-observer agreement for radiological finding classification in patients with pulmonary diseases

医学 麦克内马尔试验 放射科 放射性武器 核医学 软件 统计 计算机科学 数学 程序设计语言
作者
Yoshiharu Ohno,Kota Aoyagi,Daisuke Takenaka,Takeshi Yoshikawa,Aina Ikezaki,Yasuko Fujisawa,Kazuhiro Murayama,Hidekazu Hattori,Hiroshi Toyama
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:134: 109410-109410 被引量:22
标识
DOI:10.1016/j.ejrad.2020.109410
摘要

Abstract

Purpose

To evaluate the capability ML-based CT texture analysis for improving interobserver agreement and accuracy of radiological finding assessment in patients with COPD, interstitial lung diseases or infectious diseases.

Materials and methods

Training cases (n = 28), validation cases (n = 17) and test cases (n = 89) who underwent thin-section CT at a 320-detector row CT with wide volume scan and two 64-detector row CTs with helical scan were enrolled in this study. From 89 CT data, a total of 350 computationally selected ROI including normal lung, emphysema, nodular lesion, ground-glass opacity, reticulation and honeycomb were evaluated by three radiologists as well as by the software. Inter-observer agreements between consensus reading with and without using the software or software alone and standard references determined by consensus of pulmonologists and chest radiologists were determined using κ statistics. Overall distinguishing accuracies were compared among all methods by McNemar's test.

Results

Agreements for consensus readings obtained with and without the software or the software alone with standard references were determined as significant and substantial or excellent (with the software: κ = 0.91, p < 0.0001; without the software: κ = 0.81, p < 0.0001; the software alone: κ = 0.79, p < 0.0001). Overall differentiation accuracy of consensus reading using the software (94.9 [332/350] %) was significantly higher than that of consensus reading without using the software (84.3 [295/350] %, p < 0.0001) and the software alone (82.3 [288/350] %, p < 0.0001).

Conclusion

ML-based CT texture analysis software has potential for improving interobserver agreement and accuracy for radiological finding assessments in patients with COPD, interstitial lung diseases or infectious diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助系统提示采纳,获得10
1秒前
1秒前
sss完成签到,获得积分10
1秒前
1秒前
板凳完成签到,获得积分10
2秒前
单纯访枫发布了新的文献求助30
2秒前
bin0920发布了新的文献求助10
2秒前
aaaaaa完成签到,获得积分10
3秒前
tangsuyun完成签到,获得积分20
3秒前
MADKAI发布了新的文献求助50
3秒前
大方小白完成签到,获得积分10
3秒前
xiaokezhang发布了新的文献求助10
3秒前
3秒前
zhenzhen发布了新的文献求助10
4秒前
4秒前
hz_sz完成签到,获得积分10
5秒前
5秒前
空白完成签到,获得积分10
5秒前
所所应助合适苗条采纳,获得10
5秒前
专注易绿完成签到,获得积分10
6秒前
Anne应助吱嗷赵采纳,获得10
6秒前
xin应助666采纳,获得20
7秒前
YY发布了新的文献求助10
7秒前
7秒前
huanhuan完成签到,获得积分10
8秒前
小刘不笨完成签到,获得积分10
8秒前
吕绪特完成签到 ,获得积分10
8秒前
9秒前
愉快的夏菡完成签到,获得积分10
9秒前
研友_gnv61n完成签到,获得积分10
9秒前
zmy完成签到,获得积分10
9秒前
小蘑菇应助守约采纳,获得10
10秒前
10秒前
空白发布了新的文献求助10
11秒前
buno应助721采纳,获得20
11秒前
石阶上完成签到 ,获得积分10
11秒前
du完成签到 ,获得积分10
11秒前
Xu完成签到,获得积分10
12秒前
mmmm完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678