Machine learning for lung CT texture analysis: Improvement of inter-observer agreement for radiological finding classification in patients with pulmonary diseases

医学 麦克内马尔试验 放射科 放射性武器 核医学 软件 统计 计算机科学 数学 程序设计语言
作者
Yoshiharu Ohno,Kota Aoyagi,Daisuke Takenaka,Takeshi Yoshikawa,Aina Ikezaki,Yasuko Fujisawa,Kazuhiro Murayama,Hidekazu Hattori,Hiroshi Toyama
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:134: 109410-109410 被引量:22
标识
DOI:10.1016/j.ejrad.2020.109410
摘要

Abstract

Purpose

To evaluate the capability ML-based CT texture analysis for improving interobserver agreement and accuracy of radiological finding assessment in patients with COPD, interstitial lung diseases or infectious diseases.

Materials and methods

Training cases (n = 28), validation cases (n = 17) and test cases (n = 89) who underwent thin-section CT at a 320-detector row CT with wide volume scan and two 64-detector row CTs with helical scan were enrolled in this study. From 89 CT data, a total of 350 computationally selected ROI including normal lung, emphysema, nodular lesion, ground-glass opacity, reticulation and honeycomb were evaluated by three radiologists as well as by the software. Inter-observer agreements between consensus reading with and without using the software or software alone and standard references determined by consensus of pulmonologists and chest radiologists were determined using κ statistics. Overall distinguishing accuracies were compared among all methods by McNemar's test.

Results

Agreements for consensus readings obtained with and without the software or the software alone with standard references were determined as significant and substantial or excellent (with the software: κ = 0.91, p < 0.0001; without the software: κ = 0.81, p < 0.0001; the software alone: κ = 0.79, p < 0.0001). Overall differentiation accuracy of consensus reading using the software (94.9 [332/350] %) was significantly higher than that of consensus reading without using the software (84.3 [295/350] %, p < 0.0001) and the software alone (82.3 [288/350] %, p < 0.0001).

Conclusion

ML-based CT texture analysis software has potential for improving interobserver agreement and accuracy for radiological finding assessments in patients with COPD, interstitial lung diseases or infectious diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nanxing发布了新的文献求助10
刚刚
8秒前
Jasmineyfz完成签到 ,获得积分10
9秒前
朱奕韬发布了新的文献求助10
11秒前
苏子轩完成签到 ,获得积分10
14秒前
16秒前
山楂发布了新的文献求助10
23秒前
孤独听雨的猫完成签到 ,获得积分10
30秒前
madison完成签到 ,获得积分10
38秒前
在水一方应助thchiang采纳,获得10
39秒前
碧蓝雁风完成签到 ,获得积分10
39秒前
天真的莺完成签到,获得积分10
40秒前
今后应助雪山飞龙采纳,获得30
41秒前
小巧的香氛完成签到 ,获得积分10
41秒前
文艺的初南完成签到 ,获得积分10
42秒前
gabee完成签到 ,获得积分10
43秒前
Lexi完成签到 ,获得积分10
48秒前
mengmenglv完成签到 ,获得积分0
50秒前
suki完成签到 ,获得积分10
51秒前
56秒前
现实的曼安完成签到 ,获得积分10
57秒前
如愿完成签到 ,获得积分0
59秒前
蓝桉完成签到 ,获得积分10
1分钟前
1分钟前
淡如水完成签到 ,获得积分10
1分钟前
雪山飞龙发布了新的文献求助30
1分钟前
白米完成签到 ,获得积分10
1分钟前
Eri_SCI完成签到 ,获得积分10
1分钟前
ffff完成签到 ,获得积分10
1分钟前
糊涂的雪旋完成签到 ,获得积分10
1分钟前
roundtree完成签到 ,获得积分0
1分钟前
1分钟前
gent完成签到,获得积分10
1分钟前
Karry完成签到 ,获得积分10
1分钟前
lilylwy完成签到 ,获得积分10
1分钟前
咸鱼爱喝汤完成签到 ,获得积分10
1分钟前
shuangfeng1853完成签到 ,获得积分10
1分钟前
2分钟前
小柴胡颗粒完成签到 ,获得积分20
2分钟前
鞑靼完成签到 ,获得积分10
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146856
求助须知:如何正确求助?哪些是违规求助? 2798171
关于积分的说明 7826733
捐赠科研通 2454724
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565