Joint Analysis and Weighted Synthesis Sparsity Priors for Simultaneous Denoising and Destriping Optical Remote Sensing Images

计算机科学 正规化(语言学) 先验概率 人工智能 降噪 反问题 阈值 缩小 图像(数学) 稀疏逼近 最大后验估计 计算机视觉 操作员(生物学) 算法 数学 贝叶斯概率 最大似然 数学分析 统计 程序设计语言 生物化学 化学 抑制因子 转录因子 基因
作者
Zhenghua Huang,Yaozong Zhang,Qian Li,Xuan Li,Tianxu Zhang,Nong Sang,Hong Hu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (10): 6958-6982 被引量:87
标识
DOI:10.1109/tgrs.2020.2978276
摘要

Stripe and random noise are two different degradation phenomena that commonly coexist in optical remote sensing images, and they are often modeled as inverse problems. In model-based inverse problems, analysis and synthesis sparse representations (SSRs) are used as regularization terms to obtain approximate solutions due to their respective merits, i.e., the nonzero coefficients in SSR are usually used to describe an image, while the indexes of zeros in analysis sparse representation (ASR) are used to characterize the stripe. Inspired by these merits, we propose a unified variational framework, called a joint analysis and weighted synthesis (JAWS) sparsity model, to simultaneously separate the clean image and the stripe from a single optical remote sensing image. To solve the JAWS sparsity model efficiently, an alternating minimization optimization strategy is first employed to separate it into two subproblems that are used for different tasks. One called as weighted SSR (WSSR) is the main for optical remote sensing image denoising, which can be effectively solved by employing the weighted singular value thresholding operator, while the other called as ASR is the main approach for optical remote sensing image destriping, which is optimized by adopting the split Bregman iteration. By minimizing the two subproblems alternatively, the proposed JAWS sparsity model is efficiently solved. Finally, both quantitative and qualitative results of experiments on synthetic and real-world optical remote sensing images validate that the proposed approach is effective and even better than the state of the arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的亦寒应助啊薇儿采纳,获得20
刚刚
俊秀的芫发布了新的文献求助10
刚刚
zzz发布了新的文献求助10
1秒前
小华安完成签到,获得积分10
1秒前
上官若男应助典雅的静采纳,获得10
1秒前
小二郎应助热情的戾采纳,获得10
2秒前
CHENG_2025应助YXYWZMSZ采纳,获得20
2秒前
sean发布了新的文献求助10
3秒前
3秒前
汉堡包应助哎嘿采纳,获得10
3秒前
4秒前
斯文败类应助落寞的绾绾采纳,获得10
4秒前
溪边最好的小树完成签到,获得积分10
4秒前
大力洙完成签到,获得积分10
4秒前
Zehn发布了新的文献求助10
5秒前
Garrett发布了新的文献求助20
5秒前
学习使我快乐完成签到,获得积分10
6秒前
汉堡包应助Luna采纳,获得10
6秒前
忽然之间完成签到,获得积分10
6秒前
6秒前
鳗鱼小丸子完成签到 ,获得积分10
7秒前
tong发布了新的文献求助10
7秒前
大力洙发布了新的文献求助10
7秒前
zzzz完成签到,获得积分10
7秒前
大意的星星完成签到,获得积分10
8秒前
9秒前
9秒前
徐墨轩完成签到,获得积分10
9秒前
迷路胡萝卜完成签到,获得积分10
9秒前
Alice给Alice的求助进行了留言
10秒前
思源应助高大的又夏采纳,获得10
10秒前
Hello应助乖猫要努力采纳,获得10
10秒前
916应助sean采纳,获得10
10秒前
英俊的铭应助俊秀的芫采纳,获得30
10秒前
10秒前
10秒前
Bio应助1112采纳,获得30
11秒前
科研通AI2S应助qwaszx123采纳,获得10
11秒前
Milktea123完成签到,获得积分10
11秒前
zp完成签到 ,获得积分10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033