Joint Analysis and Weighted Synthesis Sparsity Priors for Simultaneous Denoising and Destriping Optical Remote Sensing Images

计算机科学 正规化(语言学) 先验概率 人工智能 降噪 反问题 阈值 缩小 图像(数学) 稀疏逼近 最大后验估计 计算机视觉 操作员(生物学) 算法 数学 贝叶斯概率 最大似然 基因 统计 数学分析 转录因子 生物化学 抑制因子 化学 程序设计语言
作者
Zhenghua Huang,Yaozong Zhang,Qian Li,Xuan Li,Tianxu Zhang,Nong Sang,Hong Hu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (10): 6958-6982 被引量:87
标识
DOI:10.1109/tgrs.2020.2978276
摘要

Stripe and random noise are two different degradation phenomena that commonly coexist in optical remote sensing images, and they are often modeled as inverse problems. In model-based inverse problems, analysis and synthesis sparse representations (SSRs) are used as regularization terms to obtain approximate solutions due to their respective merits, i.e., the nonzero coefficients in SSR are usually used to describe an image, while the indexes of zeros in analysis sparse representation (ASR) are used to characterize the stripe. Inspired by these merits, we propose a unified variational framework, called a joint analysis and weighted synthesis (JAWS) sparsity model, to simultaneously separate the clean image and the stripe from a single optical remote sensing image. To solve the JAWS sparsity model efficiently, an alternating minimization optimization strategy is first employed to separate it into two subproblems that are used for different tasks. One called as weighted SSR (WSSR) is the main for optical remote sensing image denoising, which can be effectively solved by employing the weighted singular value thresholding operator, while the other called as ASR is the main approach for optical remote sensing image destriping, which is optimized by adopting the split Bregman iteration. By minimizing the two subproblems alternatively, the proposed JAWS sparsity model is efficiently solved. Finally, both quantitative and qualitative results of experiments on synthetic and real-world optical remote sensing images validate that the proposed approach is effective and even better than the state of the arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
an慧儿发布了新的文献求助10
1秒前
领导范儿应助poary采纳,获得10
1秒前
1秒前
开心蛋挞完成签到,获得积分10
1秒前
2秒前
2秒前
Valky完成签到,获得积分10
2秒前
852应助555646446采纳,获得10
3秒前
3秒前
彭于晏应助的的采纳,获得10
3秒前
weiwei发布了新的文献求助10
4秒前
栗子吃饱啦应助司空秋烟采纳,获得10
4秒前
11发布了新的文献求助10
4秒前
可爱的函函应助wangechun采纳,获得10
5秒前
6秒前
zzz发布了新的文献求助10
7秒前
科研通AI2S应助咩咩采纳,获得10
8秒前
希望天下0贩的0应助weiwei采纳,获得10
8秒前
邵邵完成签到,获得积分10
9秒前
Catalysis123发布了新的文献求助10
9秒前
哈哈发布了新的文献求助10
9秒前
10秒前
11秒前
酷酷珠发布了新的文献求助20
12秒前
12秒前
Gaoge完成签到 ,获得积分10
13秒前
16秒前
poary发布了新的文献求助10
17秒前
安静元槐发布了新的文献求助10
17秒前
香蕉觅云应助heavennew采纳,获得30
17秒前
无花果应助大方的云朵采纳,获得10
17秒前
17秒前
完美世界应助幸福鱼采纳,获得10
17秒前
anne完成签到 ,获得积分10
18秒前
薛喵喵喵喵喵喵完成签到,获得积分10
19秒前
quan完成签到,获得积分10
19秒前
顾矜应助11采纳,获得10
20秒前
20秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125050
求助须知:如何正确求助?哪些是违规求助? 2775348
关于积分的说明 7726300
捐赠科研通 2430919
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600344