Joint Analysis and Weighted Synthesis Sparsity Priors for Simultaneous Denoising and Destriping Optical Remote Sensing Images

计算机科学 正规化(语言学) 先验概率 人工智能 降噪 反问题 阈值 缩小 图像(数学) 稀疏逼近 最大后验估计 计算机视觉 操作员(生物学) 算法 数学 贝叶斯概率 最大似然 数学分析 统计 程序设计语言 生物化学 化学 抑制因子 转录因子 基因
作者
Zhenghua Huang,Yaozong Zhang,Qian Li,Xuan Li,Tianxu Zhang,Nong Sang,Hong Hu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (10): 6958-6982 被引量:87
标识
DOI:10.1109/tgrs.2020.2978276
摘要

Stripe and random noise are two different degradation phenomena that commonly coexist in optical remote sensing images, and they are often modeled as inverse problems. In model-based inverse problems, analysis and synthesis sparse representations (SSRs) are used as regularization terms to obtain approximate solutions due to their respective merits, i.e., the nonzero coefficients in SSR are usually used to describe an image, while the indexes of zeros in analysis sparse representation (ASR) are used to characterize the stripe. Inspired by these merits, we propose a unified variational framework, called a joint analysis and weighted synthesis (JAWS) sparsity model, to simultaneously separate the clean image and the stripe from a single optical remote sensing image. To solve the JAWS sparsity model efficiently, an alternating minimization optimization strategy is first employed to separate it into two subproblems that are used for different tasks. One called as weighted SSR (WSSR) is the main for optical remote sensing image denoising, which can be effectively solved by employing the weighted singular value thresholding operator, while the other called as ASR is the main approach for optical remote sensing image destriping, which is optimized by adopting the split Bregman iteration. By minimizing the two subproblems alternatively, the proposed JAWS sparsity model is efficiently solved. Finally, both quantitative and qualitative results of experiments on synthetic and real-world optical remote sensing images validate that the proposed approach is effective and even better than the state of the arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助简单的鸡翅采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
泽锦臻完成签到 ,获得积分10
2秒前
3秒前
Hello应助爱吃咸鱼的夜猫采纳,获得10
3秒前
5秒前
爱科研的GG完成签到 ,获得积分10
6秒前
6秒前
8秒前
做不了一点科研完成签到 ,获得积分10
9秒前
洪山老狗发布了新的文献求助10
10秒前
Willwzh发布了新的文献求助10
10秒前
科研通AI2S应助cyf采纳,获得10
10秒前
10秒前
大约在冬季完成签到,获得积分10
11秒前
二胖发布了新的文献求助10
11秒前
jinyu完成签到,获得积分10
12秒前
老王完成签到,获得积分10
13秒前
阳光发布了新的文献求助10
13秒前
开放水蜜桃完成签到,获得积分10
16秒前
零琳完成签到 ,获得积分10
16秒前
sherlock完成签到,获得积分10
17秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
洪山老狗完成签到,获得积分10
19秒前
20秒前
orixero应助kumarr采纳,获得10
21秒前
22秒前
22秒前
JYCKLTY完成签到,获得积分10
22秒前
马希丹发布了新的文献求助10
22秒前
22秒前
myn1990发布了新的文献求助10
24秒前
youyi123完成签到,获得积分20
26秒前
pppyrus发布了新的文献求助10
26秒前
小森完成签到 ,获得积分10
26秒前
危机的向日葵完成签到 ,获得积分10
26秒前
aaa材料发布了新的文献求助10
27秒前
是小叮当完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483942
求助须知:如何正确求助?哪些是违规求助? 4584399
关于积分的说明 14397356
捐赠科研通 4514299
什么是DOI,文献DOI怎么找? 2473912
邀请新用户注册赠送积分活动 1459930
关于科研通互助平台的介绍 1433260