Enable faster and smoother spatio-temporal trajectory planning for autonomous vehicles in constrained dynamic environment

弹道 计算机科学 图形 运动学 运动规划 数学优化 采样(信号处理) 轨迹优化 人工智能 机器人 数学 最优控制 计算机视觉 理论计算机科学 滤波器(信号处理) 物理 经典力学 天文
作者
Xin Long,Yiting Kong,Shengbo Eben Li,Jianyu Chen,Yang Guan,Masayoshi Tomizuka,Bo Cheng
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:235 (4): 1101-1112 被引量:30
标识
DOI:10.1177/0954407020906627
摘要

Trajectory planning is of vital importance to decision-making for autonomous vehicles. Currently, there are three popular classes of cost-based trajectory planning methods: sampling-based, graph-search-based, and optimization-based. However, each of them has its own shortcomings, for example, high computational expense for sampling-based methods, low resolution for graph-search-based methods, and lack of global awareness for optimization-based methods. It leads to one of the challenges for trajectory planning for autonomous vehicles, which is improving planning efficiency while guaranteeing model feasibility. Therefore, this paper proposes a hybrid planning framework composed of two modules, which preserves the strength of both graph-search-based methods and optimization-based methods, thus enabling faster and smoother spatio-temporal trajectory planning in constrained dynamic environment. The proposed method first constructs spatio-temporal driving space based on directed acyclic graph and efficiently searches a spatio-temporal trajectory using the improved A* algorithm. Then taking the search result as reference, locally convex feasible driving area is designed and model predictive control is applied to further optimize the trajectory with a comprehensive consideration of vehicle kinematics and moving obstacles. Results simulated in four different scenarios all demonstrated feasible trajectories without emergency stop or abrupt steering change, which is kinematic-smooth to follow. Moreover, the average planning time was 31 ms, which only took 59.05%, 18.87%, and 0.69%, respectively, of that consumed by other state-of-the-art trajectory planning methods, namely, maximum interaction defensive policy, sampling-based method with iterative optimizations, and Graph-search-based method with Dynamic Programming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助他方世界采纳,获得10
刚刚
刚刚
刚刚
香蕉觅云应助景玉采纳,获得10
1秒前
lcls完成签到,获得积分10
1秒前
2秒前
酷波er应助辛勤的晓兰采纳,获得10
2秒前
花花屯屯完成签到 ,获得积分10
2秒前
2秒前
anlin完成签到,获得积分10
2秒前
3秒前
口口完成签到,获得积分20
3秒前
王赟晖发布了新的文献求助10
4秒前
大个应助啦啦啦采纳,获得10
4秒前
4秒前
NexusExplorer应助xiaoxiaoshu采纳,获得10
4秒前
4秒前
cuihao完成签到,获得积分10
5秒前
XRQ应助song采纳,获得20
6秒前
寒冷的奇异果完成签到,获得积分10
6秒前
领导范儿应助小白采纳,获得10
6秒前
6秒前
lsl发布了新的文献求助10
6秒前
友好白凡发布了新的文献求助10
6秒前
丰富无色完成签到,获得积分10
7秒前
科研通AI6应助郑zz采纳,获得10
7秒前
8秒前
zhaopen完成签到,获得积分10
8秒前
万能图书馆应助lyt采纳,获得10
8秒前
8秒前
迷人的小蜜蜂完成签到 ,获得积分10
10秒前
10秒前
10秒前
酷波er应助拒绝去偏旁采纳,获得10
10秒前
11秒前
11秒前
11秒前
12秒前
小解完成签到 ,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257965
求助须知:如何正确求助?哪些是违规求助? 4419974
关于积分的说明 13758480
捐赠科研通 4293444
什么是DOI,文献DOI怎么找? 2355931
邀请新用户注册赠送积分活动 1352389
关于科研通互助平台的介绍 1313159