清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enable faster and smoother spatio-temporal trajectory planning for autonomous vehicles in constrained dynamic environment

弹道 计算机科学 图形 运动学 运动规划 数学优化 采样(信号处理) 轨迹优化 人工智能 机器人 数学 最优控制 计算机视觉 理论计算机科学 物理 滤波器(信号处理) 经典力学 天文
作者
Xin Long,Yiting Kong,Shengbo Eben Li,Jianyu Chen,Yang Guan,Masayoshi Tomizuka,Bo Cheng
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:235 (4): 1101-1112 被引量:30
标识
DOI:10.1177/0954407020906627
摘要

Trajectory planning is of vital importance to decision-making for autonomous vehicles. Currently, there are three popular classes of cost-based trajectory planning methods: sampling-based, graph-search-based, and optimization-based. However, each of them has its own shortcomings, for example, high computational expense for sampling-based methods, low resolution for graph-search-based methods, and lack of global awareness for optimization-based methods. It leads to one of the challenges for trajectory planning for autonomous vehicles, which is improving planning efficiency while guaranteeing model feasibility. Therefore, this paper proposes a hybrid planning framework composed of two modules, which preserves the strength of both graph-search-based methods and optimization-based methods, thus enabling faster and smoother spatio-temporal trajectory planning in constrained dynamic environment. The proposed method first constructs spatio-temporal driving space based on directed acyclic graph and efficiently searches a spatio-temporal trajectory using the improved A* algorithm. Then taking the search result as reference, locally convex feasible driving area is designed and model predictive control is applied to further optimize the trajectory with a comprehensive consideration of vehicle kinematics and moving obstacles. Results simulated in four different scenarios all demonstrated feasible trajectories without emergency stop or abrupt steering change, which is kinematic-smooth to follow. Moreover, the average planning time was 31 ms, which only took 59.05%, 18.87%, and 0.69%, respectively, of that consumed by other state-of-the-art trajectory planning methods, namely, maximum interaction defensive policy, sampling-based method with iterative optimizations, and Graph-search-based method with Dynamic Programming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
46秒前
47秒前
老石完成签到 ,获得积分10
49秒前
刘刘完成签到 ,获得积分10
52秒前
11发布了新的文献求助10
53秒前
123完成签到 ,获得积分10
58秒前
大医仁心完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ukz37752发布了新的文献求助200
1分钟前
1分钟前
赘婿应助科研通管家采纳,获得50
1分钟前
1分钟前
nixgnef发布了新的文献求助10
1分钟前
科研通AI5应助armpit采纳,获得10
2分钟前
2分钟前
2分钟前
紫熊完成签到,获得积分10
2分钟前
JamesPei应助snowskating采纳,获得10
2分钟前
AmyHu完成签到,获得积分10
2分钟前
jiacheng发布了新的文献求助10
3分钟前
Alisha完成签到,获得积分10
3分钟前
KINGAZX完成签到 ,获得积分10
4分钟前
4分钟前
snowskating发布了新的文献求助10
4分钟前
隐形曼青应助jiacheng采纳,获得10
4分钟前
4分钟前
armpit发布了新的文献求助10
4分钟前
4分钟前
armpit完成签到,获得积分10
4分钟前
FengyaoWang完成签到,获得积分10
4分钟前
FashionBoy应助夜雨采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
斯文败类应助十分十分佳采纳,获得10
6分钟前
6分钟前
123完成签到,获得积分10
6分钟前
夜雨发布了新的文献求助10
6分钟前
6分钟前
jiacheng发布了新的文献求助10
6分钟前
田様应助酷炫小馒头采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926803
求助须知:如何正确求助?哪些是违规求助? 4196382
关于积分的说明 13032610
捐赠科研通 3968735
什么是DOI,文献DOI怎么找? 2175117
邀请新用户注册赠送积分活动 1192274
关于科研通互助平台的介绍 1102675