Enable faster and smoother spatio-temporal trajectory planning for autonomous vehicles in constrained dynamic environment

弹道 计算机科学 图形 运动学 运动规划 数学优化 采样(信号处理) 轨迹优化 人工智能 机器人 数学 最优控制 计算机视觉 理论计算机科学 滤波器(信号处理) 物理 经典力学 天文
作者
Xin Long,Yiting Kong,Shengbo Eben Li,Jianyu Chen,Yang Guan,Masayoshi Tomizuka,Bo Cheng
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:235 (4): 1101-1112 被引量:30
标识
DOI:10.1177/0954407020906627
摘要

Trajectory planning is of vital importance to decision-making for autonomous vehicles. Currently, there are three popular classes of cost-based trajectory planning methods: sampling-based, graph-search-based, and optimization-based. However, each of them has its own shortcomings, for example, high computational expense for sampling-based methods, low resolution for graph-search-based methods, and lack of global awareness for optimization-based methods. It leads to one of the challenges for trajectory planning for autonomous vehicles, which is improving planning efficiency while guaranteeing model feasibility. Therefore, this paper proposes a hybrid planning framework composed of two modules, which preserves the strength of both graph-search-based methods and optimization-based methods, thus enabling faster and smoother spatio-temporal trajectory planning in constrained dynamic environment. The proposed method first constructs spatio-temporal driving space based on directed acyclic graph and efficiently searches a spatio-temporal trajectory using the improved A* algorithm. Then taking the search result as reference, locally convex feasible driving area is designed and model predictive control is applied to further optimize the trajectory with a comprehensive consideration of vehicle kinematics and moving obstacles. Results simulated in four different scenarios all demonstrated feasible trajectories without emergency stop or abrupt steering change, which is kinematic-smooth to follow. Moreover, the average planning time was 31 ms, which only took 59.05%, 18.87%, and 0.69%, respectively, of that consumed by other state-of-the-art trajectory planning methods, namely, maximum interaction defensive policy, sampling-based method with iterative optimizations, and Graph-search-based method with Dynamic Programming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wg发布了新的文献求助10
刚刚
2秒前
平淡的雁开完成签到 ,获得积分10
2秒前
酌鹿完成签到,获得积分10
3秒前
科研通AI2S应助AYEFORBIDER采纳,获得10
10秒前
科研通AI2S应助怪味薯片采纳,获得10
10秒前
14秒前
小明同学发布了新的文献求助10
14秒前
赘婿应助Frank采纳,获得30
14秒前
于小鱼完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
Allen完成签到,获得积分10
17秒前
伶俐板栗完成签到,获得积分10
19秒前
于小鱼发布了新的文献求助10
19秒前
蘑菇发布了新的文献求助10
20秒前
20秒前
六点发布了新的文献求助10
21秒前
不配.应助xtz采纳,获得10
23秒前
24秒前
26秒前
小月完成签到,获得积分10
26秒前
隐形曼青应助shawn采纳,获得10
26秒前
六点完成签到,获得积分10
27秒前
27秒前
科研通AI2S应助美满寄松采纳,获得10
28秒前
小妤丸子完成签到,获得积分10
28秒前
优美芷蝶发布了新的文献求助10
30秒前
科研巨头发布了新的文献求助10
33秒前
小庄完成签到 ,获得积分10
36秒前
sx完成签到 ,获得积分10
38秒前
39秒前
故城发布了新的文献求助10
40秒前
42秒前
42秒前
43秒前
CodeCraft应助canjian1943采纳,获得10
46秒前
wiki完成签到,获得积分10
48秒前
49秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143739
求助须知:如何正确求助?哪些是违规求助? 2795236
关于积分的说明 7813804
捐赠科研通 2451222
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601400