Enable faster and smoother spatio-temporal trajectory planning for autonomous vehicles in constrained dynamic environment

弹道 计算机科学 图形 运动学 运动规划 数学优化 采样(信号处理) 轨迹优化 人工智能 机器人 数学 最优控制 计算机视觉 理论计算机科学 滤波器(信号处理) 物理 经典力学 天文
作者
Xin Long,Yiting Kong,Shengbo Eben Li,Jianyu Chen,Yang Guan,Masayoshi Tomizuka,Bo Cheng
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:235 (4): 1101-1112 被引量:30
标识
DOI:10.1177/0954407020906627
摘要

Trajectory planning is of vital importance to decision-making for autonomous vehicles. Currently, there are three popular classes of cost-based trajectory planning methods: sampling-based, graph-search-based, and optimization-based. However, each of them has its own shortcomings, for example, high computational expense for sampling-based methods, low resolution for graph-search-based methods, and lack of global awareness for optimization-based methods. It leads to one of the challenges for trajectory planning for autonomous vehicles, which is improving planning efficiency while guaranteeing model feasibility. Therefore, this paper proposes a hybrid planning framework composed of two modules, which preserves the strength of both graph-search-based methods and optimization-based methods, thus enabling faster and smoother spatio-temporal trajectory planning in constrained dynamic environment. The proposed method first constructs spatio-temporal driving space based on directed acyclic graph and efficiently searches a spatio-temporal trajectory using the improved A* algorithm. Then taking the search result as reference, locally convex feasible driving area is designed and model predictive control is applied to further optimize the trajectory with a comprehensive consideration of vehicle kinematics and moving obstacles. Results simulated in four different scenarios all demonstrated feasible trajectories without emergency stop or abrupt steering change, which is kinematic-smooth to follow. Moreover, the average planning time was 31 ms, which only took 59.05%, 18.87%, and 0.69%, respectively, of that consumed by other state-of-the-art trajectory planning methods, namely, maximum interaction defensive policy, sampling-based method with iterative optimizations, and Graph-search-based method with Dynamic Programming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
soda关注了科研通微信公众号
1秒前
WJC发布了新的文献求助10
1秒前
典雅碧空应助ww采纳,获得10
1秒前
梨水儿发布了新的文献求助10
1秒前
不赖床的科研狗完成签到,获得积分10
2秒前
5秒前
Yange完成签到,获得积分10
6秒前
nini发布了新的文献求助10
6秒前
6秒前
852应助章鱼小丸子采纳,获得10
7秒前
ccjjpp1243发布了新的文献求助30
7秒前
8秒前
8秒前
科研小白完成签到,获得积分10
8秒前
Veronica Mew完成签到 ,获得积分10
8秒前
9秒前
无羡完成签到 ,获得积分10
9秒前
好运连连发布了新的文献求助10
11秒前
CipherSage应助笙默0329采纳,获得10
11秒前
12秒前
12秒前
小纯洁发布了新的文献求助10
13秒前
14秒前
callmecjh发布了新的文献求助10
14秒前
tripper完成签到,获得积分10
14秒前
14秒前
15秒前
WJC完成签到,获得积分10
16秒前
16秒前
共享精神应助ex_ritian采纳,获得10
16秒前
17秒前
ww完成签到,获得积分20
18秒前
Ywr发布了新的文献求助10
18秒前
zjz1发布了新的文献求助10
18秒前
19秒前
why发布了新的文献求助20
20秒前
无辜叫兽完成签到,获得积分10
21秒前
Www发布了新的文献求助10
21秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014