Applications of Quantitative Structure-Activity Relationships (QSAR) based Virtual Screening in Drug Design: A Review

数量结构-活动关系 虚拟筛选 化学空间 药物发现 计算机科学 过程(计算) 代表(政治) 分子描述符 计算生物学 生物信息学 人工智能 机器学习 数据科学 化学 生物信息学 生物 操作系统 基因 政治 法学 生物化学 政治学
作者
P. Ganga Raju Achary
出处
期刊:Mini-reviews in Medicinal Chemistry [Bentham Science Publishers]
卷期号:20 (14): 1375-1388 被引量:51
标识
DOI:10.2174/1389557520666200429102334
摘要

The scientists, and the researchers around the globe generate tremendous amount of information everyday; for instance, so far more than 74 million molecules are registered in Chemical Abstract Services. According to a recent study, at present we have around 1060 molecules, which are classified as new drug-like molecules. The library of such molecules is now considered as ‘dark chemical space’ or ‘dark chemistry.’ Now, in order to explore such hidden molecules scientifically, a good number of live and updated databases (protein, cell, tissues, structure, drugs, etc.) are available today. The synchronization of the three different sciences: ‘genomics’, proteomics and ‘in-silico simulation’ will revolutionize the process of drug discovery. The screening of a sizable number of drugs like molecules is a challenge and it must be treated in an efficient manner. Virtual screening (VS) is an important computational tool in the drug discovery process; however, experimental verification of the drugs also equally important for the drug development process. The quantitative structure-activity relationship (QSAR) analysis is one of the machine learning technique, which is extensively used in VS techniques. QSAR is well-known for its high and fast throughput screening with a satisfactory hit rate. The QSAR model building involves (i) chemo-genomics data collection from a database or literature (ii) Calculation of right descriptors from molecular representation (iii) establishing a relationship (model) between biological activity and the selected descriptors (iv) application of QSAR model to predict the biological property for the molecules. All the hits obtained by the VS technique needs to be experimentally verified. The present mini-review highlights: the web-based machine learning tools, the role of QSAR in VS techniques, successful applications of QSAR based VS leading to the drug discovery and advantages and challenges of QSAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助羽宇采纳,获得10
1秒前
彭于晏应助豆豆采纳,获得10
2秒前
大小姐发布了新的文献求助10
3秒前
明理宛秋完成签到 ,获得积分10
4秒前
动听怀莲发布了新的文献求助10
4秒前
张鱼丸子发布了新的文献求助10
4秒前
一个发布了新的文献求助10
4秒前
6秒前
汉堡包应助林懋采纳,获得10
6秒前
orixero应助研友_Z7Xdl8采纳,获得10
7秒前
7秒前
7秒前
8秒前
豆豆完成签到,获得积分10
9秒前
朝朝完成签到,获得积分10
10秒前
10秒前
上官若男应助一步一步采纳,获得10
10秒前
11秒前
超帅的傀斗完成签到,获得积分10
11秒前
梦旋发布了新的文献求助10
11秒前
华仔应助123456qi采纳,获得30
11秒前
12秒前
朝朝发布了新的文献求助10
13秒前
一个完成签到,获得积分10
13秒前
14秒前
15秒前
SAINT发布了新的文献求助150
16秒前
Doctorque完成签到,获得积分20
17秒前
17秒前
chenhui完成签到,获得积分10
18秒前
19秒前
zb完成签到,获得积分10
19秒前
活泼的飞鸟完成签到,获得积分0
21秒前
动听怀莲完成签到,获得积分10
23秒前
科研通AI5应助Suki采纳,获得10
23秒前
27秒前
32秒前
臭臭臭小子完成签到,获得积分10
33秒前
小蘑菇应助zhangsenbing采纳,获得10
34秒前
liu发布了新的文献求助10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673993
求助须知:如何正确求助?哪些是违规求助? 3229404
关于积分的说明 9785706
捐赠科研通 2939973
什么是DOI,文献DOI怎么找? 1611552
邀请新用户注册赠送积分活动 760987
科研通“疑难数据库(出版商)”最低求助积分说明 736344