Applications of Quantitative Structure-Activity Relationships (QSAR) based Virtual Screening in Drug Design: A Review

数量结构-活动关系 虚拟筛选 化学空间 药物发现 计算机科学 过程(计算) 代表(政治) 分子描述符 计算生物学 生物信息学 人工智能 化学信息学 机器学习 数据科学 生化工程 化学 生物信息学 计算化学 生物 工程类 政治学 法学 生物化学 操作系统 基因 政治
作者
P. Ganga Raju Achary
出处
期刊:Mini-reviews in Medicinal Chemistry [Bentham Science]
卷期号:20 (14): 1375-1388 被引量:43
标识
DOI:10.2174/1389557520666200429102334
摘要

The scientists, and the researchers around the globe generate tremendous amount of information everyday; for instance, so far more than 74 million molecules are registered in Chemical Abstract Services. According to a recent study, at present we have around 1060 molecules, which are classified as new drug-like molecules. The library of such molecules is now considered as ‘dark chemical space’ or ‘dark chemistry.’ Now, in order to explore such hidden molecules scientifically, a good number of live and updated databases (protein, cell, tissues, structure, drugs, etc.) are available today. The synchronization of the three different sciences: ‘genomics’, proteomics and ‘in-silico simulation’ will revolutionize the process of drug discovery. The screening of a sizable number of drugs like molecules is a challenge and it must be treated in an efficient manner. Virtual screening (VS) is an important computational tool in the drug discovery process; however, experimental verification of the drugs also equally important for the drug development process. The quantitative structure-activity relationship (QSAR) analysis is one of the machine learning technique, which is extensively used in VS techniques. QSAR is well-known for its high and fast throughput screening with a satisfactory hit rate. The QSAR model building involves (i) chemo-genomics data collection from a database or literature (ii) Calculation of right descriptors from molecular representation (iii) establishing a relationship (model) between biological activity and the selected descriptors (iv) application of QSAR model to predict the biological property for the molecules. All the hits obtained by the VS technique needs to be experimentally verified. The present mini-review highlights: the web-based machine learning tools, the role of QSAR in VS techniques, successful applications of QSAR based VS leading to the drug discovery and advantages and challenges of QSAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
为鹅蛋完成签到 ,获得积分10
1秒前
2秒前
2秒前
dqycpu发布了新的文献求助10
2秒前
小张就瞅瞅完成签到 ,获得积分10
3秒前
yls发布了新的文献求助10
3秒前
xjcy应助温暖天与采纳,获得10
3秒前
3秒前
4秒前
yyuu发布了新的文献求助10
5秒前
6秒前
yyy发布了新的文献求助10
6秒前
Xenia发布了新的文献求助10
7秒前
英姑应助李麟采纳,获得10
7秒前
lhz发布了新的文献求助10
8秒前
9秒前
c_123完成签到,获得积分10
12秒前
Frank发布了新的文献求助10
13秒前
14秒前
14秒前
科研通AI2S应助科研小白采纳,获得10
15秒前
guoll完成签到,获得积分10
15秒前
lhl完成签到,获得积分20
18秒前
可爱的函函应助llllissa采纳,获得10
18秒前
天天快乐应助juzi采纳,获得10
19秒前
小约翰发布了新的文献求助10
19秒前
科研通AI2S应助XHW采纳,获得10
20秒前
zjspidany应助c_123采纳,获得10
20秒前
21秒前
21秒前
呐呐发布了新的文献求助10
21秒前
22秒前
yyy完成签到,获得积分10
22秒前
24秒前
25秒前
Lym发布了新的文献求助10
26秒前
羊羊羊发布了新的文献求助10
27秒前
汉堡包应助Snoopy采纳,获得10
28秒前
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260739
求助须知:如何正确求助?哪些是违规求助? 2901859
关于积分的说明 8317613
捐赠科研通 2571461
什么是DOI,文献DOI怎么找? 1397075
科研通“疑难数据库(出版商)”最低求助积分说明 653638
邀请新用户注册赠送积分活动 632129