亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Implementing Bayesian networks for ISO 31000:2018-based maritime oil spill risk management: State-of-art, implementation benefits and challenges, and future research directions.

业务 环境资源管理 环境规划
作者
Tuuli Parviainen,Floris Goerlandt,Inari Helle,Päivi Elisabet Haapasaari,Sakari Kuikka
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:278: 111520-111520 被引量:5
标识
DOI:10.1016/j.jenvman.2020.111520
摘要

The risk of a large-scale oil spill remains significant in marine environments as international maritime transport continues to grow. The environmental as well as the socio-economic impacts of a large-scale oil spill could be substantial. Oil spill models and modeling tools for Pollution Preparedness and Response (PPR) can support effective risk management. However, there is a lack of integrated approaches that consider oil spill risks comprehensively, learn from all information sources, and treat the system uncertainties in an explicit manner. Recently, the use of the international ISO 31000:2018 risk management framework has been suggested as a suitable basis for supporting oil spill PPR risk management. Bayesian networks (BNs) are graphical models that express uncertainty in a probabilistic form and can thus support decision-making processes when risks are complex and data are scarce. While BNs have increasingly been used for oil spill risk assessment (OSRA) for PPR, no link between the BNs literature and the ISO 31000:2018 framework has previously been made. This study explores how Bayesian risk models can be aligned with the ISO 31000:2018 framework by offering a flexible approach to integrate various sources of probabilistic knowledge. In order to gain insight in the current utilization of BNs for oil spill risk assessment and management (OSRA-BNs) for maritime oil spill preparedness and response, a literature review was performed. The review focused on articles presenting BN models that analyze the occurrence of oil spills, consequence mitigation in terms of offshore and shoreline oil spill response, and impacts of spills on the variables of interest. Based on the results, the study discusses the benefits of applying BNs to the ISO 31000:2018 framework as well as the challenges and further research needs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dreamchaser完成签到,获得积分10
刚刚
1秒前
无辜的黄豆完成签到 ,获得积分10
3秒前
吾系渣渣辉完成签到 ,获得积分10
6秒前
6秒前
123发布了新的文献求助10
7秒前
微醺潮汐完成签到,获得积分10
9秒前
mmyhn应助科研通管家采纳,获得20
12秒前
andrele应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
所所应助FanKun采纳,获得10
12秒前
Li发布了新的文献求助10
15秒前
123完成签到,获得积分10
16秒前
19秒前
上官若男应助殷琛采纳,获得10
22秒前
奥利奥完成签到 ,获得积分10
23秒前
srx完成签到 ,获得积分10
24秒前
禅依完成签到,获得积分10
25秒前
FanKun发布了新的文献求助10
25秒前
虾球发布了新的文献求助10
27秒前
29秒前
赘婿应助禅依采纳,获得10
29秒前
我不到啊完成签到 ,获得积分10
30秒前
彭于晏应助VERITAS采纳,获得10
32秒前
tomato发布了新的文献求助10
36秒前
37秒前
inRe发布了新的文献求助10
38秒前
40秒前
殷琛发布了新的文献求助10
42秒前
zz发布了新的文献求助10
46秒前
49秒前
50秒前
传奇3应助殷琛采纳,获得10
50秒前
51秒前
秦小狸完成签到 ,获得积分10
52秒前
VERITAS发布了新的文献求助10
54秒前
土豪的摩托完成签到 ,获得积分10
54秒前
56秒前
yezio完成签到 ,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627829
求助须知:如何正确求助?哪些是违规求助? 4714854
关于积分的说明 14963247
捐赠科研通 4785572
什么是DOI,文献DOI怎么找? 2555178
邀请新用户注册赠送积分活动 1516526
关于科研通互助平台的介绍 1476936