Implementing Bayesian networks for ISO 31000:2018-based maritime oil spill risk management: State-of-art, implementation benefits and challenges, and future research directions.

业务 环境资源管理 环境规划
作者
Tuuli Parviainen,Floris Goerlandt,Inari Helle,Päivi Elisabet Haapasaari,Sakari Kuikka
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:278: 111520-111520 被引量:5
标识
DOI:10.1016/j.jenvman.2020.111520
摘要

The risk of a large-scale oil spill remains significant in marine environments as international maritime transport continues to grow. The environmental as well as the socio-economic impacts of a large-scale oil spill could be substantial. Oil spill models and modeling tools for Pollution Preparedness and Response (PPR) can support effective risk management. However, there is a lack of integrated approaches that consider oil spill risks comprehensively, learn from all information sources, and treat the system uncertainties in an explicit manner. Recently, the use of the international ISO 31000:2018 risk management framework has been suggested as a suitable basis for supporting oil spill PPR risk management. Bayesian networks (BNs) are graphical models that express uncertainty in a probabilistic form and can thus support decision-making processes when risks are complex and data are scarce. While BNs have increasingly been used for oil spill risk assessment (OSRA) for PPR, no link between the BNs literature and the ISO 31000:2018 framework has previously been made. This study explores how Bayesian risk models can be aligned with the ISO 31000:2018 framework by offering a flexible approach to integrate various sources of probabilistic knowledge. In order to gain insight in the current utilization of BNs for oil spill risk assessment and management (OSRA-BNs) for maritime oil spill preparedness and response, a literature review was performed. The review focused on articles presenting BN models that analyze the occurrence of oil spills, consequence mitigation in terms of offshore and shoreline oil spill response, and impacts of spills on the variables of interest. Based on the results, the study discusses the benefits of applying BNs to the ISO 31000:2018 framework as well as the challenges and further research needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小葡萄发布了新的文献求助10
刚刚
哈哈哈哈发布了新的文献求助10
刚刚
刚刚
蜗牛完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
劲秉应助lingyan hu采纳,获得10
1秒前
小老板的手抓饼完成签到,获得积分10
1秒前
科研通AI2S应助善良绮菱采纳,获得30
2秒前
JY完成签到,获得积分20
2秒前
2秒前
独特的飞雪完成签到,获得积分10
2秒前
一条咸鱼发布了新的文献求助10
3秒前
寂寞的季节完成签到,获得积分10
3秒前
chenweijie完成签到,获得积分10
3秒前
SCIAI发布了新的文献求助10
3秒前
Owen应助天天喝咖啡采纳,获得10
3秒前
swagger发布了新的文献求助10
4秒前
5秒前
大方汉堡完成签到,获得积分10
5秒前
QL发布了新的文献求助10
5秒前
Ujjel75发布了新的文献求助10
6秒前
6秒前
SciGPT应助Zpiao采纳,获得30
6秒前
zrd发布了新的文献求助10
7秒前
7秒前
niulugai完成签到 ,获得积分10
7秒前
8秒前
风中冷风发布了新的文献求助10
8秒前
9秒前
充电宝应助akim采纳,获得10
9秒前
敏敏哇发布了新的文献求助10
9秒前
Waiting完成签到,获得积分10
9秒前
10秒前
平常语堂完成签到,获得积分10
11秒前
Echo发布了新的文献求助10
11秒前
11秒前
LIN发布了新的文献求助10
11秒前
Ava应助不安的雪巧采纳,获得10
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481226
求助须知:如何正确求助?哪些是违规求助? 3071419
关于积分的说明 9122057
捐赠科研通 2763201
什么是DOI,文献DOI怎么找? 1516316
邀请新用户注册赠送积分活动 701479
科研通“疑难数据库(出版商)”最低求助积分说明 700319