Implementing Bayesian networks for ISO 31000:2018-based maritime oil spill risk management: State-of-art, implementation benefits and challenges, and future research directions.

业务 环境资源管理 环境规划
作者
Tuuli Parviainen,Floris Goerlandt,Inari Helle,Päivi Elisabet Haapasaari,Sakari Kuikka
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:278: 111520-111520 被引量:5
标识
DOI:10.1016/j.jenvman.2020.111520
摘要

The risk of a large-scale oil spill remains significant in marine environments as international maritime transport continues to grow. The environmental as well as the socio-economic impacts of a large-scale oil spill could be substantial. Oil spill models and modeling tools for Pollution Preparedness and Response (PPR) can support effective risk management. However, there is a lack of integrated approaches that consider oil spill risks comprehensively, learn from all information sources, and treat the system uncertainties in an explicit manner. Recently, the use of the international ISO 31000:2018 risk management framework has been suggested as a suitable basis for supporting oil spill PPR risk management. Bayesian networks (BNs) are graphical models that express uncertainty in a probabilistic form and can thus support decision-making processes when risks are complex and data are scarce. While BNs have increasingly been used for oil spill risk assessment (OSRA) for PPR, no link between the BNs literature and the ISO 31000:2018 framework has previously been made. This study explores how Bayesian risk models can be aligned with the ISO 31000:2018 framework by offering a flexible approach to integrate various sources of probabilistic knowledge. In order to gain insight in the current utilization of BNs for oil spill risk assessment and management (OSRA-BNs) for maritime oil spill preparedness and response, a literature review was performed. The review focused on articles presenting BN models that analyze the occurrence of oil spills, consequence mitigation in terms of offshore and shoreline oil spill response, and impacts of spills on the variables of interest. Based on the results, the study discusses the benefits of applying BNs to the ISO 31000:2018 framework as well as the challenges and further research needs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
王凯完成签到,获得积分10
4秒前
4秒前
huqing发布了新的文献求助60
5秒前
5秒前
ddboys1009发布了新的文献求助10
5秒前
6秒前
C22发布了新的文献求助10
7秒前
王凯发布了新的文献求助10
8秒前
冷艳惜梦发布了新的文献求助10
8秒前
cinnamonbrd发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
snow发布了新的文献求助30
13秒前
上官若男应助赶路人采纳,获得10
14秒前
小马甲应助毅诚菌采纳,获得10
15秒前
16秒前
cleva完成签到,获得积分10
16秒前
专注的问筠完成签到,获得积分10
16秒前
16秒前
1212发布了新的文献求助10
17秒前
18秒前
王jyk发布了新的文献求助20
18秒前
Bizibili完成签到,获得积分10
18秒前
冷傲的从雪完成签到 ,获得积分10
19秒前
小废物发布了新的文献求助10
22秒前
贤弟完成签到,获得积分10
23秒前
orixero应助cinnamonbrd采纳,获得10
24秒前
24秒前
jiayouya完成签到,获得积分10
24秒前
popooo完成签到,获得积分10
24秒前
ssk完成签到,获得积分10
26秒前
skbkbe完成签到 ,获得积分10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604157
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857229
捐赠科研通 4696839
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851