Implementing Bayesian networks for ISO 31000:2018-based maritime oil spill risk management: State-of-art, implementation benefits and challenges, and future research directions.

业务 环境资源管理 环境规划
作者
Tuuli Parviainen,Floris Goerlandt,Inari Helle,Päivi Elisabet Haapasaari,Sakari Kuikka
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:278: 111520-111520 被引量:5
标识
DOI:10.1016/j.jenvman.2020.111520
摘要

The risk of a large-scale oil spill remains significant in marine environments as international maritime transport continues to grow. The environmental as well as the socio-economic impacts of a large-scale oil spill could be substantial. Oil spill models and modeling tools for Pollution Preparedness and Response (PPR) can support effective risk management. However, there is a lack of integrated approaches that consider oil spill risks comprehensively, learn from all information sources, and treat the system uncertainties in an explicit manner. Recently, the use of the international ISO 31000:2018 risk management framework has been suggested as a suitable basis for supporting oil spill PPR risk management. Bayesian networks (BNs) are graphical models that express uncertainty in a probabilistic form and can thus support decision-making processes when risks are complex and data are scarce. While BNs have increasingly been used for oil spill risk assessment (OSRA) for PPR, no link between the BNs literature and the ISO 31000:2018 framework has previously been made. This study explores how Bayesian risk models can be aligned with the ISO 31000:2018 framework by offering a flexible approach to integrate various sources of probabilistic knowledge. In order to gain insight in the current utilization of BNs for oil spill risk assessment and management (OSRA-BNs) for maritime oil spill preparedness and response, a literature review was performed. The review focused on articles presenting BN models that analyze the occurrence of oil spills, consequence mitigation in terms of offshore and shoreline oil spill response, and impacts of spills on the variables of interest. Based on the results, the study discusses the benefits of applying BNs to the ISO 31000:2018 framework as well as the challenges and further research needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘恒超发布了新的文献求助10
1秒前
沉毅发布了新的文献求助10
2秒前
坚强的草履虫完成签到,获得积分10
2秒前
3秒前
4秒前
稳重的白猫完成签到,获得积分10
4秒前
3333发布了新的文献求助10
4秒前
4秒前
酷波er应助认真若云采纳,获得10
5秒前
6秒前
诺诺完成签到 ,获得积分10
7秒前
所所应助诺之采纳,获得10
7秒前
8秒前
8秒前
8秒前
火龙果完成签到,获得积分10
8秒前
9秒前
穆一手发布了新的文献求助10
10秒前
orixero应助青青子衿采纳,获得10
10秒前
wise111发布了新的文献求助10
10秒前
坦率白萱应助A2QD采纳,获得10
11秒前
11秒前
对对对发布了新的文献求助10
12秒前
114514发布了新的文献求助10
13秒前
yanxi tao完成签到,获得积分10
13秒前
麦子发布了新的文献求助10
14秒前
14秒前
16秒前
鸣笛应助晴烟ZYM采纳,获得50
16秒前
17秒前
17秒前
bbb完成签到,获得积分10
17秒前
Owen应助zyq采纳,获得10
18秒前
18秒前
myy完成签到,获得积分10
18秒前
18秒前
沉毅完成签到,获得积分10
19秒前
熙熙沅沅完成签到,获得积分10
19秒前
orixero应助麦子采纳,获得10
19秒前
研友_VZG7GZ应助qyang采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629