Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art

乳腺摄影术 数字乳腺摄影术 人工智能 乳腺癌 计算机科学 领域 乳腺癌筛查 层析合成 乳房成像 数字化 医学物理学 机器学习 医学 癌症 计算机视觉 内科学 政治学 法学
作者
Ioannis Sechopoulos,Jonas Teuwen,Ritse M. Mann
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:72: 214-225 被引量:232
标识
DOI:10.1016/j.semcancer.2020.06.002
摘要

Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000's. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十二完成签到,获得积分10
1秒前
1秒前
1秒前
闪999发布了新的文献求助10
1秒前
貔貅完成签到,获得积分10
2秒前
orixero应助杜客采纳,获得10
5秒前
5秒前
旗树树发布了新的文献求助10
5秒前
mmmaosheng完成签到,获得积分10
5秒前
xxfsx应助田猛采纳,获得10
5秒前
yegechuanqi发布了新的文献求助10
6秒前
闪999完成签到,获得积分10
7秒前
7秒前
7秒前
9秒前
scxl2000完成签到,获得积分10
10秒前
11秒前
11秒前
思垢发布了新的文献求助10
13秒前
13秒前
sss发布了新的文献求助10
13秒前
小二郎应助林ci采纳,获得10
14秒前
14秒前
汉堡包应助ll采纳,获得10
15秒前
阿甲发布了新的文献求助10
15秒前
肖肖肖完成签到 ,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
lll完成签到 ,获得积分10
17秒前
vsbsjj发布了新的文献求助10
18秒前
18秒前
lijiauyi1994发布了新的文献求助10
18秒前
19秒前
sss完成签到,获得积分10
20秒前
20秒前
lpp_完成签到 ,获得积分10
21秒前
HJJHJH发布了新的文献求助10
24秒前
TingtingGZ发布了新的文献求助10
25秒前
Wdd完成签到,获得积分10
26秒前
光亮的绮晴完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740