Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art

乳腺摄影术 数字乳腺摄影术 人工智能 乳腺癌 计算机科学 领域 乳腺癌筛查 层析合成 乳房成像 数字化 医学物理学 机器学习 医学 癌症 计算机视觉 内科学 政治学 法学
作者
Ioannis Sechopoulos,Jonas Teuwen,Ritse M. Mann
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:72: 214-225 被引量:232
标识
DOI:10.1016/j.semcancer.2020.06.002
摘要

Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000's. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彩虹捕手发布了新的文献求助10
1秒前
bhc186发布了新的文献求助10
2秒前
2秒前
冬瓜熊完成签到,获得积分10
2秒前
义气绫关注了科研通微信公众号
2秒前
3秒前
攒一口袋星星完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
CR完成签到 ,获得积分10
5秒前
5秒前
Ting完成签到,获得积分10
5秒前
搜集达人应助ff采纳,获得10
5秒前
科研通AI6应助絮1111采纳,获得10
6秒前
打打应助李小鑫吖采纳,获得10
6秒前
6秒前
6秒前
青黄的枣12138完成签到,获得积分10
7秒前
wwr2006关注了科研通微信公众号
7秒前
7秒前
ziyue发布了新的文献求助10
7秒前
阿乐发布了新的文献求助10
7秒前
无感完成签到,获得积分10
7秒前
Kahanto完成签到,获得积分10
7秒前
8秒前
zyy发布了新的文献求助10
8秒前
nn应助美满向薇采纳,获得10
8秒前
zyx发布了新的文献求助10
8秒前
10秒前
10秒前
10秒前
10秒前
10秒前
城南花已开完成签到,获得积分10
11秒前
11秒前
数字灵魂完成签到,获得积分10
11秒前
失眠乐双完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609025
求助须知:如何正确求助?哪些是违规求助? 4693758
关于积分的说明 14879338
捐赠科研通 4719004
什么是DOI,文献DOI怎么找? 2544583
邀请新用户注册赠送积分活动 1509586
关于科研通互助平台的介绍 1472897