Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art

乳腺摄影术 数字乳腺摄影术 人工智能 乳腺癌 计算机科学 领域 乳腺癌筛查 层析合成 乳房成像 数字化 医学物理学 机器学习 医学 癌症 计算机视觉 内科学 政治学 法学
作者
Ioannis Sechopoulos,Jonas Teuwen,Ritse M. Mann
出处
期刊:Seminars in Cancer Biology [Elsevier BV]
卷期号:72: 214-225 被引量:232
标识
DOI:10.1016/j.semcancer.2020.06.002
摘要

Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000's. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙佳乐发布了新的文献求助10
1秒前
小蘑菇应助紫麒麟采纳,获得10
1秒前
1秒前
2秒前
tip完成签到,获得积分10
2秒前
Lucas应助eeush采纳,获得10
2秒前
jie酱拌面应助Lee采纳,获得10
4秒前
wwz应助二十三点一采纳,获得10
4秒前
小李完成签到,获得积分10
4秒前
小马甲应助annter采纳,获得10
5秒前
乐观小之完成签到,获得积分0
5秒前
喜悦的烧鹅完成签到,获得积分10
5秒前
6秒前
6秒前
李健应助pengpeng采纳,获得10
6秒前
小鱼完成签到,获得积分10
6秒前
Kelly发布了新的文献求助10
6秒前
7秒前
搜集达人应助枣核儿采纳,获得10
7秒前
8秒前
科研通AI5应助大胆十三采纳,获得10
8秒前
8秒前
三日宝发布了新的文献求助10
9秒前
9秒前
张凯茜发布了新的文献求助10
9秒前
10秒前
10秒前
LISHO发布了新的文献求助10
10秒前
10秒前
11秒前
天真觅风关注了科研通微信公众号
11秒前
轻nxwjn完成签到,获得积分10
12秒前
little elvins发布了新的文献求助10
13秒前
13秒前
burger-v-发布了新的文献求助10
14秒前
唠叨的黄蜂完成签到,获得积分10
14秒前
14秒前
王樨发布了新的文献求助10
14秒前
旭日发布了新的文献求助10
15秒前
小白小王发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Chipless RFID Systems Using Advanced Artificial Intelligence 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577394
求助须知:如何正确求助?哪些是违规求助? 3996655
关于积分的说明 12373185
捐赠科研通 3670647
什么是DOI,文献DOI怎么找? 2022943
邀请新用户注册赠送积分活动 1057104
科研通“疑难数据库(出版商)”最低求助积分说明 944067