Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art

乳腺摄影术 数字乳腺摄影术 人工智能 乳腺癌 计算机科学 领域 乳腺癌筛查 层析合成 乳房成像 数字化 医学物理学 机器学习 医学 癌症 计算机视觉 内科学 政治学 法学
作者
Ioannis Sechopoulos,Jonas Teuwen,Ritse M. Mann
出处
期刊:Seminars in Cancer Biology [Elsevier BV]
卷期号:72: 214-225 被引量:232
标识
DOI:10.1016/j.semcancer.2020.06.002
摘要

Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000's. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盲目逛恋发布了新的文献求助10
刚刚
Itachi12138完成签到,获得积分10
刚刚
罗是一完成签到,获得积分10
1秒前
tsw完成签到,获得积分10
1秒前
丘比特应助77采纳,获得10
1秒前
1秒前
1秒前
guangwow完成签到,获得积分10
1秒前
1秒前
ding应助球球采纳,获得50
1秒前
2秒前
2秒前
2秒前
satchzhao完成签到,获得积分10
2秒前
2秒前
2秒前
bob发布了新的文献求助10
3秒前
帆帆牛发布了新的文献求助10
3秒前
852应助Loooong采纳,获得10
3秒前
xiao发布了新的文献求助10
3秒前
Johnny完成签到,获得积分10
3秒前
XIAOWANG发布了新的文献求助10
3秒前
123654完成签到 ,获得积分10
3秒前
万默发布了新的文献求助10
4秒前
4秒前
tree完成签到,获得积分10
5秒前
5秒前
越红完成签到,获得积分10
5秒前
6秒前
6秒前
有氧呼吸完成签到,获得积分10
6秒前
哈基米德应助gu123采纳,获得20
6秒前
小天发布了新的文献求助30
6秒前
7秒前
7秒前
Jack完成签到,获得积分10
7秒前
笨笨熊发布了新的文献求助10
7秒前
橘子海完成签到 ,获得积分10
7秒前
yang发布了新的文献求助30
8秒前
ylj1531585955完成签到,获得积分20
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016344
求助须知:如何正确求助?哪些是违规求助? 3556478
关于积分的说明 11321199
捐赠科研通 3289279
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060