Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art

乳腺摄影术 数字乳腺摄影术 人工智能 乳腺癌 计算机科学 领域 乳腺癌筛查 层析合成 乳房成像 数字化 医学物理学 机器学习 医学 癌症 计算机视觉 内科学 政治学 法学
作者
Ioannis Sechopoulos,Jonas Teuwen,Ritse M. Mann
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:72: 214-225 被引量:232
标识
DOI:10.1016/j.semcancer.2020.06.002
摘要

Screening for breast cancer with mammography has been introduced in various countries over the last 30 years, initially using analog screen-film-based systems and, over the last 20 years, transitioning to the use of fully digital systems. With the introduction of digitization, the computer interpretation of images has been a subject of intense interest, resulting in the introduction of computer-aided detection (CADe) and diagnosis (CADx) algorithms in the early 2000's. Although they were introduced with high expectations, the potential improvement in the clinical realm failed to materialize, mostly due to the high number of false positive marks per analyzed image. In the last five years, the artificial intelligence (AI) revolution in computing, driven mostly by deep learning and convolutional neural networks, has also pervaded the field of automated breast cancer detection in digital mammography and digital breast tomosynthesis. Research in this area first involved comparison of its capabilities to that of conventional CADe/CADx methods, which quickly demonstrated the potential of this new technology. In the last couple of years, more mature and some commercial products have been developed, and studies of their performance compared to that of experienced breast radiologists are showing that these algorithms are on par with human-performance levels in retrospective data sets. Although additional studies, especially prospective evaluations performed in the real screening environment, are needed, it is becoming clear that AI will have an important role in the future breast cancer screening realm. Exactly how this new player will shape this field remains to be determined, but recent studies are already evaluating different options for implementation of this technology. The aim of this review is to provide an overview of the basic concepts and developments in the field AI for breast cancer detection in digital mammography and digital breast tomosynthesis. The pitfalls of conventional methods, and how these are, for the most part, avoided by this new technology, will be discussed. Importantly, studies that have evaluated the current capabilities of AI and proposals for how these capabilities should be leveraged in the clinical realm will be reviewed, while the questions that need to be answered before this vision becomes a reality are posed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助Janus采纳,获得10
1秒前
科研通AI2S应助太阳采纳,获得10
1秒前
Vicktor2021发布了新的文献求助10
1秒前
共享精神应助eda采纳,获得10
1秒前
852应助星星不说话采纳,获得10
1秒前
宏宏发布了新的文献求助10
2秒前
008完成签到,获得积分10
3秒前
ding应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得30
4秒前
ding应助科研通管家采纳,获得10
4秒前
33应助科研通管家采纳,获得10
4秒前
33应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
勤奋梨愁完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
Endymion完成签到,获得积分10
10秒前
隐形曼青应助研一采纳,获得10
10秒前
11秒前
庾绯发布了新的文献求助10
12秒前
13秒前
cocolu应助crazyme采纳,获得20
14秒前
wangyr11发布了新的文献求助10
14秒前
xss完成签到 ,获得积分10
14秒前
14秒前
摸猫的鱼发布了新的文献求助10
15秒前
华仔应助宏宏采纳,获得10
15秒前
欢喜大地发布了新的文献求助10
16秒前
eda发布了新的文献求助10
16秒前
16秒前
语音助手完成签到 ,获得积分10
17秒前
17秒前
17秒前
18秒前
19秒前
维生素pp发布了新的文献求助10
20秒前
tusssao完成签到,获得积分10
20秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392477
求助须知:如何正确求助?哪些是违规求助? 3003086
关于积分的说明 8807533
捐赠科研通 2689819
什么是DOI,文献DOI怎么找? 1473318
科研通“疑难数据库(出版商)”最低求助积分说明 681547
邀请新用户注册赠送积分活动 674351