Predicting algal biochar yield using eXtreme Gradient Boosting (XGB) algorithm of machine learning methods

特征选择 产量(工程) 相关系数 计算机科学 算法 预测建模 生物量(生态学) 机器学习 生物炭 生物系统 Boosting(机器学习) 环境科学 土壤科学 数学 工艺工程 材料科学 农学 工程类 复合材料 化学工程 热解 生物
作者
Abhijeet Pathy,Saswat Meher,P. Balasubramanian
出处
期刊:Algal Research-Biomass Biofuels and Bioproducts [Elsevier]
卷期号:50: 102006-102006 被引量:159
标识
DOI:10.1016/j.algal.2020.102006
摘要

Abstract Pyrolysis is a thermochemical pathway widely used for the conversion of biomass into useful products such as biochar, bio-oil, and syngases. A recent surge in the adoption of the pyrolysis process at realtime scenarios for the appropriate management and conversion of residues demands the modeling of the pyrolysis process. Prediction of algal biochar yield along with its composition was attempted in this study with the eXtreme Gradient Boosting (XGB) machine learning method. An extensive grid search method has been implemented in the XGB model to explore all the possible considered input parameter combinations for predicting the biochar yield. Thirteen different pyrolytically important input parameter combinations have been attempted and compared with the combination suggested by the feature selection technique of model for predicting the biochar yield. This feature selection technique highlights the H/C, N/C, ash content, pyrolysis temperature, and time as the key parameters on deciding the algal biochar yield, where H, C, N are hydrogen, carbon and nitrogen content of biomass. The highest regression coefficient (R2) of 0.84 has been achieved between experimental and model predictive biochar yield for the testing dataset, once the model was trained with the training dataset. Pearson correlation coefficient matrix unraveled the correlation among and in between input parameters and biochar yield. Feature Importance Plots revealed temperature as the most influential factor. SHapley Additive exPlanations (SHAP) Dependence Plots depicted the interactive effect of temperature and other input parameters on the algal biochar yield. Summary Plots showed the combined features of importance through feature and SHAP values. The developed XGB model provides new insights on comprehending the influence of input parameters on predicting the algal biochar yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
打打应助dckiop采纳,获得10
2秒前
4秒前
脑洞疼应助刘家翔采纳,获得10
4秒前
5秒前
天真琳完成签到,获得积分10
5秒前
5秒前
我是老大应助小陈采纳,获得10
6秒前
6秒前
9秒前
10秒前
ssyl34发布了新的文献求助10
10秒前
天真琳发布了新的文献求助30
11秒前
鲨鱼辣椒发布了新的文献求助30
13秒前
13秒前
14秒前
dckiop发布了新的文献求助10
14秒前
14秒前
14秒前
abtitw完成签到,获得积分10
15秒前
15秒前
16秒前
dididi完成签到,获得积分10
16秒前
刘家翔发布了新的文献求助10
17秒前
18秒前
zjw发布了新的文献求助10
18秒前
壮观的夏云完成签到,获得积分10
20秒前
dididi发布了新的文献求助10
20秒前
sijin1216发布了新的文献求助10
20秒前
pylchm发布了新的文献求助10
20秒前
nfmhh发布了新的文献求助10
22秒前
白翊辰发布了新的文献求助10
22秒前
24秒前
28秒前
领导范儿应助白翊辰采纳,获得10
30秒前
打打应助xshlzwyyh采纳,获得10
30秒前
英姑应助刘家翔采纳,获得10
30秒前
31秒前
31秒前
一二三亖发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359478
求助须知:如何正确求助?哪些是违规求助? 2982264
关于积分的说明 8702828
捐赠科研通 2663878
什么是DOI,文献DOI怎么找? 1458686
科研通“疑难数据库(出版商)”最低求助积分说明 675236
邀请新用户注册赠送积分活动 666300