Predicting algal biochar yield using eXtreme Gradient Boosting (XGB) algorithm of machine learning methods

特征选择 产量(工程) 相关系数 计算机科学 算法 预测建模 生物量(生态学) 机器学习 生物炭 生物系统 Boosting(机器学习) 环境科学 土壤科学 数学 工艺工程 材料科学 农学 工程类 复合材料 化学工程 热解 生物
作者
Abhijeet Pathy,Saswat Meher,P. Balasubramanian
出处
期刊:Algal Research-Biomass Biofuels and Bioproducts [Elsevier]
卷期号:50: 102006-102006 被引量:182
标识
DOI:10.1016/j.algal.2020.102006
摘要

Abstract Pyrolysis is a thermochemical pathway widely used for the conversion of biomass into useful products such as biochar, bio-oil, and syngases. A recent surge in the adoption of the pyrolysis process at realtime scenarios for the appropriate management and conversion of residues demands the modeling of the pyrolysis process. Prediction of algal biochar yield along with its composition was attempted in this study with the eXtreme Gradient Boosting (XGB) machine learning method. An extensive grid search method has been implemented in the XGB model to explore all the possible considered input parameter combinations for predicting the biochar yield. Thirteen different pyrolytically important input parameter combinations have been attempted and compared with the combination suggested by the feature selection technique of model for predicting the biochar yield. This feature selection technique highlights the H/C, N/C, ash content, pyrolysis temperature, and time as the key parameters on deciding the algal biochar yield, where H, C, N are hydrogen, carbon and nitrogen content of biomass. The highest regression coefficient (R2) of 0.84 has been achieved between experimental and model predictive biochar yield for the testing dataset, once the model was trained with the training dataset. Pearson correlation coefficient matrix unraveled the correlation among and in between input parameters and biochar yield. Feature Importance Plots revealed temperature as the most influential factor. SHapley Additive exPlanations (SHAP) Dependence Plots depicted the interactive effect of temperature and other input parameters on the algal biochar yield. Summary Plots showed the combined features of importance through feature and SHAP values. The developed XGB model provides new insights on comprehending the influence of input parameters on predicting the algal biochar yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助文光采纳,获得10
2秒前
吃个馍馍完成签到,获得积分10
2秒前
pork0001发布了新的文献求助10
3秒前
11111发布了新的文献求助10
3秒前
Aries发布了新的文献求助10
3秒前
3秒前
HAo发布了新的文献求助30
4秒前
Lucy完成签到,获得积分10
4秒前
shi完成签到,获得积分10
4秒前
lalala完成签到,获得积分10
4秒前
小蘑菇应助大力的萝莉采纳,获得10
5秒前
科研通AI2S应助紫色茄子采纳,获得10
5秒前
5秒前
FFF发布了新的文献求助10
6秒前
彭于彦祖应助科研通管家采纳,获得30
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
丘比特应助往海深处听采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
花开富贵应助科研通管家采纳,获得10
6秒前
AneyWinter66应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得30
6秒前
科目三应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得20
7秒前
7秒前
7秒前
7秒前
9秒前
9秒前
小董发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601539
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847124
捐赠科研通 4681263
什么是DOI,文献DOI怎么找? 2539418
邀请新用户注册赠送积分活动 1506305
关于科研通互助平台的介绍 1471297