亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stochastic Dual Dynamic Programming for Multiechelon Lot Sizing with Component Substitution

数学优化 计算机科学 启发式 随机规划 背景(考古学) 启发式 动态规划 对偶(语法数字) 线性规划 数学 艺术 古生物学 文学类 生物
作者
Simon Thevenin,Yossiri Adulyasak,Jean‐François Cordeau
出处
期刊:Informs Journal on Computing 卷期号:34 (6): 3151-3169 被引量:7
标识
DOI:10.1287/ijoc.2022.1215
摘要

This work investigates lot sizing with component substitution under demand uncertainty. The integration of component substitution with lot sizing in an uncertain demand context is important because the consolidation of the demand for components naturally allows risk-pooling and reduces operating costs. The considered problem is relevant not only in a production context, but also in the context of distribution planning. We propose a stochastic programming formulation for the static–dynamic type of uncertainty, in which the setup decisions are frozen but the production and consumption quantities are decided dynamically. To tackle the scalability issues commonly encountered in multistage stochastic optimization, this paper investigates the use of stochastic dual dynamic programming (SDDP). In addition, we consider various improvements of SDDP, including the use of strong cuts, the fast generation of cuts by solving the linear relaxation of the problem, and retaining the average demand scenarios. Finally, we propose two heuristics, namely, a hybrid of progressive hedging with SDDP and a heuristic version of SDDP. Computational experiments conducted on well-known instances from the literature show that the heuristic version of SDDP outperforms other methods. The proposed method can plan with up to 10 decision stages and 20 scenarios per stage, which results in 20 10 scenario paths in total. Moreover, as the heuristic version of SDDP can replan to account for new information in less than a second, it is convenient in a dynamic context. Summary of Contribution: We believe our paper is suitable for the mission and scope of IJOC because we design efficient algorithms to solve an operations research problem. More precisely, we investigate the use of stochastic dual dynamic programming (SDDP) for lot sizing with component substitution under demand uncertainty. In this work, we consider the static–dynamic decision framework, and a good approximation of the expected costs in this context requires us to solve the problem with a large number of scenarios of future demand. As solving the considered problem is computationally intensive, we investigate the use of SDDP, which decomposes the problem per decision stage. We study several enhancements of SDDP, such as the use of strong cuts, the incorporation of a lower bound computed with the average demand scenario, the multicut version of SDDP, and scenario sampling with randomized quasi–Monte Carlo. Despite these improvements, the convergence of SDDP remains slow. Consequently, we propose a heuristic version of SDDP and a hybrid of progressive hedging and SDDP. We present the results of an extensive computational study performed on well-known instances from the literature. The results show that the heuristic SDDP outperforms the hybrid of progressive hedging with SDDP and state-of-the-art methods from the literature. Besides, our analysis shows that component substitution can pool the risk, and it allows maintaining the same service level with less inventory. The presented methodology can be used by practitioners to size their production lots, and subsequent researchers can build upon our results to consider uncertainty in other parameters, such as lead times, yields, and production capacities. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms – Discrete. Funding: This work was supported by Mitacs and the Institut de Valorisation des Données (IVADO). Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijoc.2022.1215 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Badada完成签到,获得积分10
3秒前
沉静盼易完成签到,获得积分10
6秒前
蒙豆儿发布了新的文献求助10
8秒前
gszy1975完成签到,获得积分10
10秒前
风趣之云完成签到,获得积分10
19秒前
25秒前
星辰大海应助乐观海云采纳,获得30
27秒前
故城完成签到 ,获得积分10
28秒前
34秒前
卡皮巴拉完成签到,获得积分20
35秒前
38秒前
Donger完成签到 ,获得积分10
38秒前
王木木完成签到 ,获得积分10
41秒前
乐观海云发布了新的文献求助30
43秒前
完美世界应助青山采纳,获得10
46秒前
西蓝花战士完成签到 ,获得积分10
46秒前
烟花应助聪明凡桃采纳,获得10
1分钟前
繁星完成签到 ,获得积分10
1分钟前
1分钟前
默默襄完成签到 ,获得积分10
1分钟前
Ferry完成签到,获得积分10
1分钟前
kexuezhongxinhu完成签到 ,获得积分10
1分钟前
生活扑面而来的善意完成签到,获得积分10
1分钟前
1分钟前
zengxiaoyan完成签到,获得积分10
1分钟前
小大林完成签到 ,获得积分10
1分钟前
zhu完成签到,获得积分10
1分钟前
桐桐应助虞美人采纳,获得10
1分钟前
聪明凡桃完成签到,获得积分20
1分钟前
1分钟前
1分钟前
青山发布了新的文献求助10
1分钟前
添添发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
发100篇SCI完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345566
求助须知:如何正确求助?哪些是违规求助? 4480481
关于积分的说明 13946398
捐赠科研通 4378012
什么是DOI,文献DOI怎么找? 2405541
邀请新用户注册赠送积分活动 1398137
关于科研通互助平台的介绍 1370544