Stochastic Dual Dynamic Programming for Multiechelon Lot Sizing with Component Substitution

数学优化 计算机科学 启发式 随机规划 背景(考古学) 启发式 动态规划 对偶(语法数字) 线性规划 数学 生物 文学类 艺术 古生物学
作者
Simon Thevenin,Yossiri Adulyasak,Jean‐François Cordeau
出处
期刊:Informs Journal on Computing 卷期号:34 (6): 3151-3169 被引量:7
标识
DOI:10.1287/ijoc.2022.1215
摘要

This work investigates lot sizing with component substitution under demand uncertainty. The integration of component substitution with lot sizing in an uncertain demand context is important because the consolidation of the demand for components naturally allows risk-pooling and reduces operating costs. The considered problem is relevant not only in a production context, but also in the context of distribution planning. We propose a stochastic programming formulation for the static–dynamic type of uncertainty, in which the setup decisions are frozen but the production and consumption quantities are decided dynamically. To tackle the scalability issues commonly encountered in multistage stochastic optimization, this paper investigates the use of stochastic dual dynamic programming (SDDP). In addition, we consider various improvements of SDDP, including the use of strong cuts, the fast generation of cuts by solving the linear relaxation of the problem, and retaining the average demand scenarios. Finally, we propose two heuristics, namely, a hybrid of progressive hedging with SDDP and a heuristic version of SDDP. Computational experiments conducted on well-known instances from the literature show that the heuristic version of SDDP outperforms other methods. The proposed method can plan with up to 10 decision stages and 20 scenarios per stage, which results in 20 10 scenario paths in total. Moreover, as the heuristic version of SDDP can replan to account for new information in less than a second, it is convenient in a dynamic context. Summary of Contribution: We believe our paper is suitable for the mission and scope of IJOC because we design efficient algorithms to solve an operations research problem. More precisely, we investigate the use of stochastic dual dynamic programming (SDDP) for lot sizing with component substitution under demand uncertainty. In this work, we consider the static–dynamic decision framework, and a good approximation of the expected costs in this context requires us to solve the problem with a large number of scenarios of future demand. As solving the considered problem is computationally intensive, we investigate the use of SDDP, which decomposes the problem per decision stage. We study several enhancements of SDDP, such as the use of strong cuts, the incorporation of a lower bound computed with the average demand scenario, the multicut version of SDDP, and scenario sampling with randomized quasi–Monte Carlo. Despite these improvements, the convergence of SDDP remains slow. Consequently, we propose a heuristic version of SDDP and a hybrid of progressive hedging and SDDP. We present the results of an extensive computational study performed on well-known instances from the literature. The results show that the heuristic SDDP outperforms the hybrid of progressive hedging with SDDP and state-of-the-art methods from the literature. Besides, our analysis shows that component substitution can pool the risk, and it allows maintaining the same service level with less inventory. The presented methodology can be used by practitioners to size their production lots, and subsequent researchers can build upon our results to consider uncertainty in other parameters, such as lead times, yields, and production capacities. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms – Discrete. Funding: This work was supported by Mitacs and the Institut de Valorisation des Données (IVADO). Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijoc.2022.1215 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
H1998发布了新的文献求助10
2秒前
华仔应助LouieHuang采纳,获得10
3秒前
叽里呱啦发布了新的文献求助10
5秒前
青汁发布了新的文献求助10
5秒前
不配.应助Clxzzgzg采纳,获得10
6秒前
浅尝离白应助悦耳代亦采纳,获得30
7秒前
8秒前
Radish完成签到 ,获得积分10
8秒前
情怀应助haomozc采纳,获得10
8秒前
任梓宁发布了新的文献求助10
9秒前
紧张的背包完成签到,获得积分20
9秒前
无花果应助风中无血采纳,获得10
10秒前
pluto应助元恪颜采纳,获得10
11秒前
11秒前
爆米花应助euphoria采纳,获得10
11秒前
汉堡包应助LACIA采纳,获得10
13秒前
文无发布了新的文献求助10
13秒前
科研通AI2S应助禁止客服采纳,获得10
15秒前
18秒前
18秒前
20秒前
cmccs发布了新的文献求助30
20秒前
是江江哥啊完成签到,获得积分10
20秒前
chinh完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
24秒前
24秒前
王.完成签到,获得积分10
25秒前
莫慕儿完成签到,获得积分10
25秒前
26秒前
曾经的臻完成签到,获得积分10
27秒前
风中无血发布了新的文献求助10
28秒前
救驾来迟完成签到 ,获得积分10
28秒前
邹友亮发布了新的文献求助10
29秒前
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153144
求助须知:如何正确求助?哪些是违规求助? 2804394
关于积分的说明 7859068
捐赠科研通 2462208
什么是DOI,文献DOI怎么找? 1310701
科研通“疑难数据库(出版商)”最低求助积分说明 629362
版权声明 601794