Stochastic Dual Dynamic Programming for Multiechelon Lot Sizing with Component Substitution

数学优化 计算机科学 启发式 随机规划 背景(考古学) 启发式 动态规划 对偶(语法数字) 线性规划 数学 生物 文学类 艺术 古生物学
作者
Simon Thevenin,Yossiri Adulyasak,Jean‐François Cordeau
出处
期刊:Informs Journal on Computing 卷期号:34 (6): 3151-3169 被引量:7
标识
DOI:10.1287/ijoc.2022.1215
摘要

This work investigates lot sizing with component substitution under demand uncertainty. The integration of component substitution with lot sizing in an uncertain demand context is important because the consolidation of the demand for components naturally allows risk-pooling and reduces operating costs. The considered problem is relevant not only in a production context, but also in the context of distribution planning. We propose a stochastic programming formulation for the static–dynamic type of uncertainty, in which the setup decisions are frozen but the production and consumption quantities are decided dynamically. To tackle the scalability issues commonly encountered in multistage stochastic optimization, this paper investigates the use of stochastic dual dynamic programming (SDDP). In addition, we consider various improvements of SDDP, including the use of strong cuts, the fast generation of cuts by solving the linear relaxation of the problem, and retaining the average demand scenarios. Finally, we propose two heuristics, namely, a hybrid of progressive hedging with SDDP and a heuristic version of SDDP. Computational experiments conducted on well-known instances from the literature show that the heuristic version of SDDP outperforms other methods. The proposed method can plan with up to 10 decision stages and 20 scenarios per stage, which results in 20 10 scenario paths in total. Moreover, as the heuristic version of SDDP can replan to account for new information in less than a second, it is convenient in a dynamic context. Summary of Contribution: We believe our paper is suitable for the mission and scope of IJOC because we design efficient algorithms to solve an operations research problem. More precisely, we investigate the use of stochastic dual dynamic programming (SDDP) for lot sizing with component substitution under demand uncertainty. In this work, we consider the static–dynamic decision framework, and a good approximation of the expected costs in this context requires us to solve the problem with a large number of scenarios of future demand. As solving the considered problem is computationally intensive, we investigate the use of SDDP, which decomposes the problem per decision stage. We study several enhancements of SDDP, such as the use of strong cuts, the incorporation of a lower bound computed with the average demand scenario, the multicut version of SDDP, and scenario sampling with randomized quasi–Monte Carlo. Despite these improvements, the convergence of SDDP remains slow. Consequently, we propose a heuristic version of SDDP and a hybrid of progressive hedging and SDDP. We present the results of an extensive computational study performed on well-known instances from the literature. The results show that the heuristic SDDP outperforms the hybrid of progressive hedging with SDDP and state-of-the-art methods from the literature. Besides, our analysis shows that component substitution can pool the risk, and it allows maintaining the same service level with less inventory. The presented methodology can be used by practitioners to size their production lots, and subsequent researchers can build upon our results to consider uncertainty in other parameters, such as lead times, yields, and production capacities. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms – Discrete. Funding: This work was supported by Mitacs and the Institut de Valorisation des Données (IVADO). Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijoc.2022.1215 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助Csene采纳,获得10
1秒前
zhangyu应助俭朴的乐巧采纳,获得10
2秒前
雪花发布了新的文献求助10
6秒前
6秒前
zho应助一三二五七采纳,获得20
8秒前
李俩甜蜜蜜完成签到 ,获得积分20
10秒前
YY完成签到,获得积分0
11秒前
上官若男应助Gengar采纳,获得30
11秒前
11秒前
小巧雪糕完成签到,获得积分10
13秒前
14秒前
加贝发布了新的文献求助10
14秒前
hua发布了新的文献求助10
15秒前
乐乐应助xy采纳,获得10
15秒前
15秒前
贺知什么书完成签到,获得积分10
16秒前
汉堡包应助阜睿采纳,获得10
17秒前
SciGPT应助嘻嘻嘻采纳,获得10
18秒前
首席医官完成签到,获得积分10
18秒前
19秒前
张志欢发布了新的文献求助10
19秒前
11发布了新的文献求助10
20秒前
21秒前
苗条曲奇发布了新的文献求助10
22秒前
23秒前
谢俏艳关注了科研通微信公众号
24秒前
WDWK发布了新的文献求助10
25秒前
曹宏达发布了新的文献求助10
25秒前
26秒前
zhourongchun发布了新的文献求助10
27秒前
酷波er应助雪花采纳,获得10
28秒前
11发布了新的文献求助10
30秒前
今后应助苗条曲奇采纳,获得10
34秒前
35秒前
36秒前
37秒前
hua完成签到,获得积分10
38秒前
整齐无声发布了新的文献求助10
39秒前
guozizi应助Fazie采纳,获得200
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994039
求助须知:如何正确求助?哪些是违规求助? 3534593
关于积分的说明 11266046
捐赠科研通 3274516
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883238
科研通“疑难数据库(出版商)”最低求助积分说明 809719