已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Stochastic Dual Dynamic Programming for Multiechelon Lot Sizing with Component Substitution

数学优化 计算机科学 启发式 随机规划 背景(考古学) 启发式 动态规划 对偶(语法数字) 线性规划 数学 生物 文学类 艺术 古生物学
作者
Simon Thevenin,Yossiri Adulyasak,Jean‐François Cordeau
出处
期刊:Informs Journal on Computing 卷期号:34 (6): 3151-3169 被引量:7
标识
DOI:10.1287/ijoc.2022.1215
摘要

This work investigates lot sizing with component substitution under demand uncertainty. The integration of component substitution with lot sizing in an uncertain demand context is important because the consolidation of the demand for components naturally allows risk-pooling and reduces operating costs. The considered problem is relevant not only in a production context, but also in the context of distribution planning. We propose a stochastic programming formulation for the static–dynamic type of uncertainty, in which the setup decisions are frozen but the production and consumption quantities are decided dynamically. To tackle the scalability issues commonly encountered in multistage stochastic optimization, this paper investigates the use of stochastic dual dynamic programming (SDDP). In addition, we consider various improvements of SDDP, including the use of strong cuts, the fast generation of cuts by solving the linear relaxation of the problem, and retaining the average demand scenarios. Finally, we propose two heuristics, namely, a hybrid of progressive hedging with SDDP and a heuristic version of SDDP. Computational experiments conducted on well-known instances from the literature show that the heuristic version of SDDP outperforms other methods. The proposed method can plan with up to 10 decision stages and 20 scenarios per stage, which results in 20 10 scenario paths in total. Moreover, as the heuristic version of SDDP can replan to account for new information in less than a second, it is convenient in a dynamic context. Summary of Contribution: We believe our paper is suitable for the mission and scope of IJOC because we design efficient algorithms to solve an operations research problem. More precisely, we investigate the use of stochastic dual dynamic programming (SDDP) for lot sizing with component substitution under demand uncertainty. In this work, we consider the static–dynamic decision framework, and a good approximation of the expected costs in this context requires us to solve the problem with a large number of scenarios of future demand. As solving the considered problem is computationally intensive, we investigate the use of SDDP, which decomposes the problem per decision stage. We study several enhancements of SDDP, such as the use of strong cuts, the incorporation of a lower bound computed with the average demand scenario, the multicut version of SDDP, and scenario sampling with randomized quasi–Monte Carlo. Despite these improvements, the convergence of SDDP remains slow. Consequently, we propose a heuristic version of SDDP and a hybrid of progressive hedging and SDDP. We present the results of an extensive computational study performed on well-known instances from the literature. The results show that the heuristic SDDP outperforms the hybrid of progressive hedging with SDDP and state-of-the-art methods from the literature. Besides, our analysis shows that component substitution can pool the risk, and it allows maintaining the same service level with less inventory. The presented methodology can be used by practitioners to size their production lots, and subsequent researchers can build upon our results to consider uncertainty in other parameters, such as lead times, yields, and production capacities. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms – Discrete. Funding: This work was supported by Mitacs and the Institut de Valorisation des Données (IVADO). Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijoc.2022.1215 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
健忘的溪灵完成签到 ,获得积分10
3秒前
3秒前
Shiyuzz完成签到,获得积分10
5秒前
文静的峻熙完成签到,获得积分10
5秒前
Ca发布了新的文献求助10
6秒前
wzq发布了新的文献求助10
7秒前
丘比特应助cara33采纳,获得20
8秒前
sky发布了新的文献求助10
8秒前
russing完成签到 ,获得积分10
10秒前
儿学化学打断腿完成签到,获得积分10
10秒前
常绝山完成签到 ,获得积分10
10秒前
完美世界应助CCccCCC采纳,获得10
13秒前
13秒前
13秒前
wangli完成签到,获得积分10
14秒前
Ca完成签到,获得积分10
14秒前
15秒前
壮观不斜发布了新的文献求助10
17秒前
17秒前
二三发布了新的文献求助10
18秒前
NSS发布了新的文献求助10
18秒前
天宁发布了新的文献求助10
19秒前
大个应助deway采纳,获得10
19秒前
21秒前
cara33发布了新的文献求助20
21秒前
量子星尘发布了新的文献求助10
22秒前
保持好心情完成签到 ,获得积分10
24秒前
二三完成签到,获得积分10
25秒前
天宁完成签到,获得积分20
25秒前
CCccCCC发布了新的文献求助10
26秒前
Takahara2000应助WENWEN采纳,获得10
26秒前
27秒前
27秒前
30秒前
科研通AI6应助科研通管家采纳,获得30
31秒前
慕青应助科研通管家采纳,获得10
31秒前
GingerF应助科研通管家采纳,获得50
31秒前
共享精神应助科研通管家采纳,获得10
31秒前
完美世界应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4869185
求助须知:如何正确求助?哪些是违规求助? 4160301
关于积分的说明 12901202
捐赠科研通 3914903
什么是DOI,文献DOI怎么找? 2150119
邀请新用户注册赠送积分活动 1168536
关于科研通互助平台的介绍 1071117