亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stochastic Dual Dynamic Programming for Multiechelon Lot Sizing with Component Substitution

数学优化 计算机科学 启发式 随机规划 背景(考古学) 启发式 动态规划 对偶(语法数字) 线性规划 数学 艺术 古生物学 文学类 生物
作者
Simon Thevenin,Yossiri Adulyasak,Jean‐François Cordeau
出处
期刊:Informs Journal on Computing 卷期号:34 (6): 3151-3169 被引量:7
标识
DOI:10.1287/ijoc.2022.1215
摘要

This work investigates lot sizing with component substitution under demand uncertainty. The integration of component substitution with lot sizing in an uncertain demand context is important because the consolidation of the demand for components naturally allows risk-pooling and reduces operating costs. The considered problem is relevant not only in a production context, but also in the context of distribution planning. We propose a stochastic programming formulation for the static–dynamic type of uncertainty, in which the setup decisions are frozen but the production and consumption quantities are decided dynamically. To tackle the scalability issues commonly encountered in multistage stochastic optimization, this paper investigates the use of stochastic dual dynamic programming (SDDP). In addition, we consider various improvements of SDDP, including the use of strong cuts, the fast generation of cuts by solving the linear relaxation of the problem, and retaining the average demand scenarios. Finally, we propose two heuristics, namely, a hybrid of progressive hedging with SDDP and a heuristic version of SDDP. Computational experiments conducted on well-known instances from the literature show that the heuristic version of SDDP outperforms other methods. The proposed method can plan with up to 10 decision stages and 20 scenarios per stage, which results in 20 10 scenario paths in total. Moreover, as the heuristic version of SDDP can replan to account for new information in less than a second, it is convenient in a dynamic context. Summary of Contribution: We believe our paper is suitable for the mission and scope of IJOC because we design efficient algorithms to solve an operations research problem. More precisely, we investigate the use of stochastic dual dynamic programming (SDDP) for lot sizing with component substitution under demand uncertainty. In this work, we consider the static–dynamic decision framework, and a good approximation of the expected costs in this context requires us to solve the problem with a large number of scenarios of future demand. As solving the considered problem is computationally intensive, we investigate the use of SDDP, which decomposes the problem per decision stage. We study several enhancements of SDDP, such as the use of strong cuts, the incorporation of a lower bound computed with the average demand scenario, the multicut version of SDDP, and scenario sampling with randomized quasi–Monte Carlo. Despite these improvements, the convergence of SDDP remains slow. Consequently, we propose a heuristic version of SDDP and a hybrid of progressive hedging and SDDP. We present the results of an extensive computational study performed on well-known instances from the literature. The results show that the heuristic SDDP outperforms the hybrid of progressive hedging with SDDP and state-of-the-art methods from the literature. Besides, our analysis shows that component substitution can pool the risk, and it allows maintaining the same service level with less inventory. The presented methodology can be used by practitioners to size their production lots, and subsequent researchers can build upon our results to consider uncertainty in other parameters, such as lead times, yields, and production capacities. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms – Discrete. Funding: This work was supported by Mitacs and the Institut de Valorisation des Données (IVADO). Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijoc.2022.1215 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助体贴花卷采纳,获得10
2秒前
像个间谍完成签到 ,获得积分10
3秒前
5秒前
vv完成签到,获得积分10
6秒前
karstbing发布了新的文献求助10
6秒前
9秒前
12秒前
William_l_c完成签到,获得积分10
26秒前
瘦瘦的迎南完成签到 ,获得积分10
27秒前
Ava应助细辛半夏兼五味采纳,获得10
28秒前
laicai完成签到,获得积分10
31秒前
SciGPT应助ceeray23采纳,获得20
32秒前
33秒前
NexusExplorer应助laicai采纳,获得10
35秒前
光轮2000发布了新的文献求助10
38秒前
万能图书馆应助karstbing采纳,获得10
38秒前
ztayx完成签到 ,获得积分10
43秒前
44秒前
科目三应助吃个馍馍采纳,获得10
46秒前
47秒前
丘比特应助科研通管家采纳,获得10
49秒前
Criminology34应助科研通管家采纳,获得10
49秒前
彭于晏应助科研通管家采纳,获得10
49秒前
Criminology34应助科研通管家采纳,获得10
49秒前
Criminology34应助科研通管家采纳,获得10
49秒前
49秒前
李爱国应助科研通管家采纳,获得10
49秒前
体贴花卷发布了新的文献求助10
50秒前
隐形曼青应助光轮2000采纳,获得10
53秒前
龙腾岁月完成签到 ,获得积分10
55秒前
Mei完成签到,获得积分10
1分钟前
俭朴爆米花完成签到 ,获得积分10
1分钟前
严冰蝶完成签到 ,获得积分10
1分钟前
1分钟前
可爱的函函应助海咲umi采纳,获得10
1分钟前
光轮2000发布了新的文献求助10
1分钟前
1分钟前
karstbing发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603239
求助须知:如何正确求助?哪些是违规求助? 4688315
关于积分的说明 14853234
捐赠科研通 4688214
什么是DOI,文献DOI怎么找? 2540526
邀请新用户注册赠送积分活动 1506981
关于科研通互助平台的介绍 1471521