Stochastic Dual Dynamic Programming for Multiechelon Lot Sizing with Component Substitution

数学优化 计算机科学 启发式 随机规划 背景(考古学) 启发式 动态规划 对偶(语法数字) 线性规划 数学 艺术 古生物学 文学类 生物
作者
Simon Thevenin,Yossiri Adulyasak,Jean‐François Cordeau
出处
期刊:Informs Journal on Computing 卷期号:34 (6): 3151-3169 被引量:7
标识
DOI:10.1287/ijoc.2022.1215
摘要

This work investigates lot sizing with component substitution under demand uncertainty. The integration of component substitution with lot sizing in an uncertain demand context is important because the consolidation of the demand for components naturally allows risk-pooling and reduces operating costs. The considered problem is relevant not only in a production context, but also in the context of distribution planning. We propose a stochastic programming formulation for the static–dynamic type of uncertainty, in which the setup decisions are frozen but the production and consumption quantities are decided dynamically. To tackle the scalability issues commonly encountered in multistage stochastic optimization, this paper investigates the use of stochastic dual dynamic programming (SDDP). In addition, we consider various improvements of SDDP, including the use of strong cuts, the fast generation of cuts by solving the linear relaxation of the problem, and retaining the average demand scenarios. Finally, we propose two heuristics, namely, a hybrid of progressive hedging with SDDP and a heuristic version of SDDP. Computational experiments conducted on well-known instances from the literature show that the heuristic version of SDDP outperforms other methods. The proposed method can plan with up to 10 decision stages and 20 scenarios per stage, which results in 20 10 scenario paths in total. Moreover, as the heuristic version of SDDP can replan to account for new information in less than a second, it is convenient in a dynamic context. Summary of Contribution: We believe our paper is suitable for the mission and scope of IJOC because we design efficient algorithms to solve an operations research problem. More precisely, we investigate the use of stochastic dual dynamic programming (SDDP) for lot sizing with component substitution under demand uncertainty. In this work, we consider the static–dynamic decision framework, and a good approximation of the expected costs in this context requires us to solve the problem with a large number of scenarios of future demand. As solving the considered problem is computationally intensive, we investigate the use of SDDP, which decomposes the problem per decision stage. We study several enhancements of SDDP, such as the use of strong cuts, the incorporation of a lower bound computed with the average demand scenario, the multicut version of SDDP, and scenario sampling with randomized quasi–Monte Carlo. Despite these improvements, the convergence of SDDP remains slow. Consequently, we propose a heuristic version of SDDP and a hybrid of progressive hedging and SDDP. We present the results of an extensive computational study performed on well-known instances from the literature. The results show that the heuristic SDDP outperforms the hybrid of progressive hedging with SDDP and state-of-the-art methods from the literature. Besides, our analysis shows that component substitution can pool the risk, and it allows maintaining the same service level with less inventory. The presented methodology can be used by practitioners to size their production lots, and subsequent researchers can build upon our results to consider uncertainty in other parameters, such as lead times, yields, and production capacities. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms – Discrete. Funding: This work was supported by Mitacs and the Institut de Valorisation des Données (IVADO). Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijoc.2022.1215 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝浅完成签到 ,获得积分10
刚刚
整齐荟完成签到,获得积分10
刚刚
wuyuan完成签到,获得积分10
1秒前
1秒前
www发布了新的文献求助10
1秒前
2秒前
炸弹完成签到,获得积分10
2秒前
李洁发布了新的文献求助10
2秒前
JamesPei应助务实善若采纳,获得10
3秒前
黑武士完成签到,获得积分10
3秒前
飘随云影关注了科研通微信公众号
3秒前
Robin发布了新的文献求助10
4秒前
嘿嘿应助粗心的秋白采纳,获得30
4秒前
4秒前
5秒前
完美世界应助坚强的安双采纳,获得10
5秒前
6秒前
臻灏发布了新的文献求助10
7秒前
8秒前
Yulanda完成签到 ,获得积分10
8秒前
9秒前
Zhaoyt完成签到,获得积分10
10秒前
学生古月完成签到,获得积分20
10秒前
啦啦啦完成签到,获得积分10
11秒前
oohQoo发布了新的文献求助10
11秒前
Feng完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
遇安发布了新的文献求助10
13秒前
刘亦菲完成签到,获得积分10
13秒前
夕沫发布了新的文献求助30
13秒前
河堤完成签到 ,获得积分10
14秒前
orixero应助正直的尔芙采纳,获得10
15秒前
心灵美的初蝶完成签到,获得积分10
16秒前
jiangqingquan发布了新的文献求助10
16秒前
Cmqq应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605551
求助须知:如何正确求助?哪些是违规求助? 4690129
关于积分的说明 14862295
捐赠科研通 4701787
什么是DOI,文献DOI怎么找? 2542138
邀请新用户注册赠送积分活动 1507793
关于科研通互助平台的介绍 1472113