SGL-SVM: A novel method for tumor classification via support vector machine with sparse group Lasso

支持向量机 Lasso(编程语言) 人工智能 模式识别(心理学) 群(周期表) 计算机科学 机器学习 数学 化学 万维网 有机化学
作者
Yanhao Huo,Lihui Xin,Chuanze Kang,Minghui Wang,Qin Ma,Bin Yu
出处
期刊:Journal of Theoretical Biology [Elsevier]
卷期号:486: 110098-110098 被引量:38
标识
DOI:10.1016/j.jtbi.2019.110098
摘要

At present, with the in-depth study of gene expression data, the significant role of tumor classification in clinical medicine has become more apparent. In particular, the sparse characteristics of gene expression data within and between groups. Therefore, this paper focuses on the study of tumor classification based on the sparsity characteristics of genes. On this basis, we propose a new method of tumor classification—Sparse Group Lasso (least absolute shrinkage and selection operator) and Support Vector Machine (SGL-SVM). Firstly, the primary selection of feature genes is performed on the normalized tumor datasets using the Kruskal–Wallis rank sum test. Secondly, using a sparse group Lasso for further selection, and finally, the support vector machine serves as a classifier for classification. We validate proposed method on microarray and NGS datasets respectively. Formerly, on three two-class and five multi-class microarray datasets it is tested by 10-fold cross-validation and compared with other three classifiers. SGL-SVM is then applied on BRCA and GBM datasets and tested by 5-fold cross-validation. Satisfactory accuracy is obtained by above experiments and compared with other proposed methods. The experimental results show that the proposed method achieves a higher classification accuracy and selects fewer feature genes, which can be widely applied in classification for high-dimensional and small-sample tumor datasets. The source code and all datasets are available at https://github.com/QUST-AIBBDRC/SGL-SVM/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助xTATx采纳,获得10
1秒前
啊大大完成签到,获得积分10
1秒前
2秒前
神勇乐安完成签到,获得积分10
2秒前
3秒前
科研通AI2S应助hehe采纳,获得10
3秒前
3秒前
xiaosi发布了新的文献求助10
3秒前
黄百川完成签到 ,获得积分10
4秒前
NZH关闭了NZH文献求助
5秒前
AM应助完美的海秋采纳,获得10
5秒前
mp5完成签到,获得积分10
6秒前
簌落完成签到,获得积分10
6秒前
mzds发布了新的文献求助10
7秒前
英姑应助高无怨采纳,获得10
7秒前
7秒前
传奇3应助西尔多采纳,获得10
8秒前
舒适的太君完成签到,获得积分10
10秒前
CatherineRR完成签到 ,获得积分10
10秒前
陈12发布了新的文献求助80
11秒前
善学以致用应助彬9采纳,获得10
12秒前
12秒前
13秒前
zhl完成签到,获得积分10
14秒前
pigzhu完成签到,获得积分10
16秒前
易达发布了新的文献求助30
19秒前
AM应助完美的海秋采纳,获得10
19秒前
WH发布了新的文献求助10
20秒前
20秒前
20秒前
liushirui完成签到,获得积分10
20秒前
21秒前
21秒前
科研通AI2S应助ZZDXXX采纳,获得10
22秒前
22秒前
23秒前
一只蓉馍馍完成签到,获得积分10
26秒前
今后应助我不看月亮采纳,获得10
26秒前
小马甲应助小雪采纳,获得20
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244242
求助须知:如何正确求助?哪些是违规求助? 2887961
关于积分的说明 8250736
捐赠科研通 2556491
什么是DOI,文献DOI怎么找? 1384786
科研通“疑难数据库(出版商)”最低求助积分说明 649936
邀请新用户注册赠送积分活动 626021