Spatial Transformer for 3D Point Clouds

点云 计算机科学 分割 仿射变换 人工智能 变压器 计算机视觉 人工神经网络 模式识别(心理学) 算法 数学 几何学 量子力学 物理 电压
作者
Jiayun Wang,Rudrasis Chakraborty,Stella X. Yu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:26
标识
DOI:10.1109/tpami.2021.3070341
摘要

Deep neural networks are widely used for understanding 3D point clouds. At each point convolution layer, features are computed from local neighbourhoods of 3D points and combined for subsequent processing in order to extract semantic information. Existing methods adopt the same individual point neighborhoods throughout the network layers, defined by the same metric on the fixed input point coordinates. This common practice is easy to implement but not necessarily optimal. Ideally, local neighborhoods should be different at different layers, as more latent information is extracted at deeper layers. We propose a novel end-to-end approach to learn different non-rigid transformations of the input point cloud so that optimal local neighborhoods can be adopted at each layer. We propose both linear (affine) and non-linear (projective and deformable) spatial transformers for 3D point clouds. With spatial transformers on the ShapeNet part segmentation dataset, the network achieves higher accuracy for all categories, with 8 percent gain on earphones and rockets in particular. Our method also outperforms the state-of-the-art on other point cloud tasks such as classification, detection, and semantic segmentation. Visualizations show that spatial transformers can learn features more efficiently by dynamically altering local neighborhoods according to the geometry and semantics of 3D shapes in spite of their within-category variations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助孤独冷霜采纳,获得10
刚刚
jackten发布了新的文献求助10
刚刚
1秒前
2秒前
ohooo发布了新的文献求助10
2秒前
嘻哈学习发布了新的文献求助10
3秒前
彭于晏应助痴情的冰淇淋采纳,获得10
3秒前
3秒前
4秒前
赵安欣完成签到 ,获得积分20
5秒前
5秒前
5秒前
dope发布了新的文献求助10
5秒前
正直铅笔发布了新的文献求助10
6秒前
6秒前
Calvin-funsom完成签到,获得积分10
6秒前
赘婿应助盛夏如花采纳,获得10
7秒前
卡皮巴拉完成签到 ,获得积分10
8秒前
8秒前
CodeCraft应助jackten采纳,获得10
9秒前
赵安欣发布了新的文献求助10
9秒前
ohooo完成签到,获得积分20
9秒前
NPCLi完成签到 ,获得积分20
10秒前
上官若男应助端庄的妙菱采纳,获得10
10秒前
科目三应助rht采纳,获得10
10秒前
Lyue发布了新的文献求助10
11秒前
慕青应助叶子的叶采纳,获得10
11秒前
13秒前
14秒前
15秒前
天天快乐应助黑章鱼保罗采纳,获得10
16秒前
凶狠的小熊猫完成签到,获得积分10
16秒前
16秒前
勿欲论比发布了新的文献求助10
17秒前
zzl完成签到,获得积分10
18秒前
和谐渊思完成签到,获得积分10
18秒前
19秒前
19秒前
为何丶发布了新的文献求助10
20秒前
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310502
求助须知:如何正确求助?哪些是违规求助? 2943362
关于积分的说明 8514240
捐赠科研通 2618611
什么是DOI,文献DOI怎么找? 1431244
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649616