Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network

傅里叶变换 迭代重建 投影(关系代数) 算法 氡变换 人工智能 离散时间傅里叶变换 傅里叶分析 计算机科学 几何学 计算机视觉 数学 数学分析 分数阶傅立叶变换
作者
Tao Zhang,Li Zhang,Zhiqiang Chen,Yuxiang Xing,Hewei Gao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (12): 4445-4457 被引量:10
标识
DOI:10.1109/tmi.2020.3020720
摘要

In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed object is established in a simple mathematical form (i.e., the Fourier slice theorem for SGCT). Based on its Fourier slice theorem and its unique data sampling in the Fourier space, a Linogram-based Fourier reconstruction method is derived for SGCT. We demonstrate that the entire Linogram reconstruction process can be embedded as known operators into an end-to-end neural network. As a learning-based approach, the proposed Linogram-Net has capability of improving CT image quality for non-ideal imaging scenarios, a limited-angle SGCT for instance, through combining weights learning in the projection domain and loss minimization in the image domain. Numerical simulations and physical experiments on an SGCT prototype platform showed that our proposed Linogram-based method can achieve accurate reconstruction from a dual-SGCT scan and can greatly reduce computational complexity when compared with the filtered backprojection type reconstruction. The Linogram-Net achieved accurate reconstruction when projection data are complete and significantly suppressed image artifacts from a limited-angle SGCT scan mimicked by using a clinical CT dataset, with the average CT number error in the selected regions of interest reduced from 67.7 Hounsfield Units (HU) to 28.7 HU, and the average normalized mean square error of overall images reduced from 4.21e-3 to 2.65e-3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋子完成签到,获得积分10
刚刚
刚刚
Watson完成签到,获得积分10
1秒前
summer完成签到 ,获得积分10
1秒前
神经娃完成签到,获得积分10
2秒前
2秒前
holy完成签到,获得积分10
2秒前
简单的梦菡完成签到,获得积分20
3秒前
baniu完成签到,获得积分10
3秒前
洋子发布了新的文献求助10
3秒前
温暖芸完成签到,获得积分10
3秒前
5秒前
cyl完成签到,获得积分10
5秒前
sunshine应助HHL采纳,获得10
6秒前
黑森林完成签到,获得积分10
6秒前
7秒前
耍酷的翠曼完成签到,获得积分10
7秒前
白飞发布了新的文献求助20
9秒前
巴啦啦小魔仙完成签到 ,获得积分10
9秒前
团团完成签到 ,获得积分10
11秒前
12秒前
121完成签到,获得积分10
13秒前
古的古的应助唠叨的昊焱采纳,获得20
13秒前
Wang完成签到 ,获得积分10
15秒前
15秒前
俊逸沅完成签到,获得积分10
16秒前
18秒前
左丘冥完成签到,获得积分10
18秒前
张帅完成签到,获得积分10
20秒前
结实康完成签到,获得积分10
21秒前
ziye发布了新的文献求助10
22秒前
方羽应助aaaaaa采纳,获得30
22秒前
23秒前
阿飘应助wodetaiyangLLL采纳,获得10
24秒前
supcond完成签到,获得积分10
24秒前
24秒前
bodhi完成签到,获得积分10
25秒前
26秒前
罗_应助科研通管家采纳,获得30
26秒前
今后应助科研通管家采纳,获得10
26秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Pediatric Nurse Telephone Triage 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350209
求助须知:如何正确求助?哪些是违规求助? 2976028
关于积分的说明 8672575
捐赠科研通 2657031
什么是DOI,文献DOI怎么找? 1454866
科研通“疑难数据库(出版商)”最低求助积分说明 673541
邀请新用户注册赠送积分活动 664017