清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network

傅里叶变换 迭代重建 投影(关系代数) 算法 氡变换 人工智能 离散时间傅里叶变换 傅里叶分析 计算机科学 几何学 计算机视觉 数学 数学分析 分数阶傅立叶变换
作者
Tao Zhang,Li Zhang,Zhiqiang Chen,Yuxiang Xing,Hewei Gao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (12): 4445-4457 被引量:10
标识
DOI:10.1109/tmi.2020.3020720
摘要

In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed object is established in a simple mathematical form (i.e., the Fourier slice theorem for SGCT). Based on its Fourier slice theorem and its unique data sampling in the Fourier space, a Linogram-based Fourier reconstruction method is derived for SGCT. We demonstrate that the entire Linogram reconstruction process can be embedded as known operators into an end-to-end neural network. As a learning-based approach, the proposed Linogram-Net has capability of improving CT image quality for non-ideal imaging scenarios, a limited-angle SGCT for instance, through combining weights learning in the projection domain and loss minimization in the image domain. Numerical simulations and physical experiments on an SGCT prototype platform showed that our proposed Linogram-based method can achieve accurate reconstruction from a dual-SGCT scan and can greatly reduce computational complexity when compared with the filtered backprojection type reconstruction. The Linogram-Net achieved accurate reconstruction when projection data are complete and significantly suppressed image artifacts from a limited-angle SGCT scan mimicked by using a clinical CT dataset, with the average CT number error in the selected regions of interest reduced from 67.7 Hounsfield Units (HU) to 28.7 HU, and the average normalized mean square error of overall images reduced from 4.21e-3 to 2.65e-3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
一盏壶完成签到,获得积分10
5秒前
Fairy完成签到,获得积分10
10秒前
poki完成签到 ,获得积分10
19秒前
山是山三十三完成签到 ,获得积分10
30秒前
52秒前
在水一方完成签到,获得积分0
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
Emperor完成签到 ,获得积分0
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
1分钟前
明理从露完成签到 ,获得积分10
1分钟前
冷傲半邪完成签到,获得积分10
2分钟前
1437594843完成签到 ,获得积分10
2分钟前
三水完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助20
3分钟前
pegasus0802完成签到,获得积分10
3分钟前
RED发布了新的文献求助10
3分钟前
3分钟前
小怪完成签到,获得积分10
3分钟前
3分钟前
3分钟前
lx完成签到,获得积分10
3分钟前
GMEd1son完成签到,获得积分10
3分钟前
xiaowangwang完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
橙橙完成签到 ,获得积分10
5分钟前
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
美好灵寒完成签到 ,获得积分10
6分钟前
科研通AI2S应助Jessica采纳,获得10
6分钟前
6分钟前
殷勤的涵梅完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
Future完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664590
求助须知:如何正确求助?哪些是违规求助? 4865694
关于积分的说明 15108114
捐赠科研通 4823215
什么是DOI,文献DOI怎么找? 2582091
邀请新用户注册赠送积分活动 1536184
关于科研通互助平台的介绍 1494567