Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network

傅里叶变换 迭代重建 投影(关系代数) 算法 氡变换 人工智能 离散时间傅里叶变换 傅里叶分析 计算机科学 几何学 计算机视觉 数学 数学分析 分数阶傅立叶变换
作者
Tao Zhang,Li Zhang,Zhiqiang Chen,Yuxiang Xing,Hewei Gao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (12): 4445-4457 被引量:10
标识
DOI:10.1109/tmi.2020.3020720
摘要

In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed object is established in a simple mathematical form (i.e., the Fourier slice theorem for SGCT). Based on its Fourier slice theorem and its unique data sampling in the Fourier space, a Linogram-based Fourier reconstruction method is derived for SGCT. We demonstrate that the entire Linogram reconstruction process can be embedded as known operators into an end-to-end neural network. As a learning-based approach, the proposed Linogram-Net has capability of improving CT image quality for non-ideal imaging scenarios, a limited-angle SGCT for instance, through combining weights learning in the projection domain and loss minimization in the image domain. Numerical simulations and physical experiments on an SGCT prototype platform showed that our proposed Linogram-based method can achieve accurate reconstruction from a dual-SGCT scan and can greatly reduce computational complexity when compared with the filtered backprojection type reconstruction. The Linogram-Net achieved accurate reconstruction when projection data are complete and significantly suppressed image artifacts from a limited-angle SGCT scan mimicked by using a clinical CT dataset, with the average CT number error in the selected regions of interest reduced from 67.7 Hounsfield Units (HU) to 28.7 HU, and the average normalized mean square error of overall images reduced from 4.21e-3 to 2.65e-3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
背后的小白菜完成签到,获得积分10
3秒前
叶玉雯完成签到 ,获得积分20
4秒前
充电小子完成签到 ,获得积分10
5秒前
粗犷的凌兰完成签到,获得积分10
5秒前
Akim应助方向采纳,获得10
6秒前
烟花应助木中一采纳,获得10
7秒前
李健应助走过的风采纳,获得10
7秒前
7秒前
ASHhan111完成签到,获得积分10
7秒前
叶玉雯关注了科研通微信公众号
9秒前
gua完成签到 ,获得积分10
9秒前
啦啦完成签到 ,获得积分10
10秒前
sube完成签到,获得积分10
10秒前
张大星完成签到 ,获得积分10
12秒前
秦屿发布了新的文献求助10
15秒前
ziwei完成签到 ,获得积分10
15秒前
Orange应助123asd采纳,获得10
16秒前
星辰大海应助123asd采纳,获得10
16秒前
16秒前
16秒前
Tohka完成签到 ,获得积分10
17秒前
科研通AI6应助dzh采纳,获得10
17秒前
一颗松应助马雪滢采纳,获得10
17秒前
17秒前
123别认出我完成签到,获得积分10
18秒前
义气的断秋完成签到,获得积分10
19秒前
19秒前
Red完成签到,获得积分10
20秒前
夏xx完成签到 ,获得积分10
21秒前
小一完成签到,获得积分10
21秒前
livo发布了新的文献求助10
21秒前
emeqwq发布了新的文献求助10
22秒前
Red发布了新的文献求助10
24秒前
Syun完成签到,获得积分10
25秒前
美丽的冰枫完成签到,获得积分10
26秒前
27秒前
科研通AI5应助归尘采纳,获得10
28秒前
emeqwq完成签到,获得积分10
28秒前
yy不是m完成签到,获得积分10
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130554
求助须知:如何正确求助?哪些是违规求助? 4332648
关于积分的说明 13498156
捐赠科研通 4169169
什么是DOI,文献DOI怎么找? 2285499
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227430