Fourier Properties of Symmetric-Geometry Computed Tomography and Its Linogram Reconstruction With Neural Network

傅里叶变换 迭代重建 投影(关系代数) 算法 氡变换 人工智能 离散时间傅里叶变换 傅里叶分析 计算机科学 几何学 计算机视觉 数学 数学分析 分数阶傅立叶变换
作者
Tao Zhang,Li Zhang,Zhiqiang Chen,Yuxiang Xing,Hewei Gao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (12): 4445-4457 被引量:10
标识
DOI:10.1109/tmi.2020.3020720
摘要

In this work, we investigate the Fourier properties of a symmetric-geometry computed tomography (SGCT) with linearly distributed source and detector in a stationary configuration. A linkage between the 1D Fourier Transform of a weighted projection from SGCT and the 2D Fourier Transform of a deformed object is established in a simple mathematical form (i.e., the Fourier slice theorem for SGCT). Based on its Fourier slice theorem and its unique data sampling in the Fourier space, a Linogram-based Fourier reconstruction method is derived for SGCT. We demonstrate that the entire Linogram reconstruction process can be embedded as known operators into an end-to-end neural network. As a learning-based approach, the proposed Linogram-Net has capability of improving CT image quality for non-ideal imaging scenarios, a limited-angle SGCT for instance, through combining weights learning in the projection domain and loss minimization in the image domain. Numerical simulations and physical experiments on an SGCT prototype platform showed that our proposed Linogram-based method can achieve accurate reconstruction from a dual-SGCT scan and can greatly reduce computational complexity when compared with the filtered backprojection type reconstruction. The Linogram-Net achieved accurate reconstruction when projection data are complete and significantly suppressed image artifacts from a limited-angle SGCT scan mimicked by using a clinical CT dataset, with the average CT number error in the selected regions of interest reduced from 67.7 Hounsfield Units (HU) to 28.7 HU, and the average normalized mean square error of overall images reduced from 4.21e-3 to 2.65e-3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fanfan完成签到 ,获得积分10
2秒前
zxh发布了新的文献求助10
2秒前
4秒前
4秒前
Jenny发布了新的文献求助10
5秒前
6秒前
自觉的鲂发布了新的文献求助20
7秒前
woshiwuziq完成签到 ,获得积分10
9秒前
zxh完成签到,获得积分10
9秒前
10秒前
船长发布了新的文献求助10
10秒前
GQ完成签到,获得积分10
10秒前
研友_5Zl9D8发布了新的文献求助10
11秒前
11秒前
毛毛完成签到,获得积分10
12秒前
我的山本完成签到,获得积分10
13秒前
今后应助顺利狗采纳,获得10
14秒前
Tacamily完成签到,获得积分10
14秒前
荔枝多酚完成签到,获得积分10
16秒前
大个应助宇宙尽头的餐馆采纳,获得10
16秒前
SYLH应助魁梧的败采纳,获得10
17秒前
18秒前
2021完成签到 ,获得积分10
20秒前
wangzhiqin完成签到,获得积分10
21秒前
zzh完成签到 ,获得积分10
21秒前
21秒前
认真的砖头完成签到 ,获得积分10
22秒前
宇宙尽头的餐馆完成签到,获得积分10
22秒前
23秒前
nana发布了新的文献求助10
23秒前
大迪发布了新的文献求助10
23秒前
24秒前
zhangyue7777完成签到,获得积分10
25秒前
pcx发布了新的文献求助10
25秒前
我是老大应助Jenny采纳,获得10
26秒前
27秒前
自觉的鲂完成签到,获得积分10
28秒前
顺利狗发布了新的文献求助10
28秒前
jin晨发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966114
求助须知:如何正确求助?哪些是违规求助? 3511490
关于积分的说明 11158539
捐赠科研通 3246107
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324