制冷剂
性能系数
全球变暖潜力
热交换器
热泵
热力学
材料科学
空气源热泵
环境科学
核工程
机械
物理
工程类
温室气体
生态学
生物
作者
Byeongsu Kim,Dongchan Lee,Sang Hun Lee,Yongchan Kim
标识
DOI:10.1016/j.applthermaleng.2020.115954
摘要
In this study, performance improvements of optimized heat pump water heaters (HPWHs) employing low global warming potential refrigerants are numerically evaluated against the performance of the conventional R-410A HPWH. A simulation model for HPWHs is developed and validated based on experimental results obtained in the R-410A and R-32 HPWHs. The performances of the HPWHs employing R-32, R-446A, and L-41b are simulated considering for high-temperature applications (HTAs) and low-temperature applications (LTAs) based on EN 14511. The heat exchanger design parameters of the HPWHs are optimized for achieving the maximum coefficient of performance (COP) for each alternative refrigerant. The optimized L-41b HPWH exhibits the highest COP, and the COP improvements thereof are 6.3% and 4.6% in the HTA and LTA conditions, respectively, compared with those of the R-410A HPWH. Moreover, the total equivalent warming impacts of the optimized HPWHs employing the alternative refrigerants are 5.9–9.9% lower than those of the R-410A HPWH.
科研通智能强力驱动
Strongly Powered by AbleSci AI