SpineParseNet: Spine Parsing for Volumetric MR Image by a Two-Stage Segmentation Framework With Semantic Image Representation

分割 人工智能 计算机科学 图像分割 图形 模式识别(心理学) 解析 计算机视觉 代表(政治) 理论计算机科学 政治学 政治 法学
作者
Shumao Pang,Chunlan Pang,Lei Zhao,Yangfan Chen,Zhihai Su,Yujia Zhou,Meiyan Huang,Wei Yang,Hai Lü,Qianjin Feng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (1): 262-273 被引量:94
标识
DOI:10.1109/tmi.2020.3025087
摘要

Spine parsing (i.e., multi-class segmentation of vertebrae and intervertebral discs (IVDs)) for volumetric magnetic resonance (MR) image plays a significant role in various spinal disease diagnoses and treatments of spine disorders, yet is still a challenge due to the inter-class similarity and intra-class variation of spine images. Existing fully convolutional network based methods failed to explicitly exploit the dependencies between different spinal structures. In this article, we propose a novel two-stage framework named SpineParseNet to achieve automated spine parsing for volumetric MR images. The SpineParseNet consists of a 3D graph convolutional segmentation network (GCSN) for 3D coarse segmentation and a 2D residual U-Net (ResUNet) for 2D segmentation refinement. In 3D GCSN, region pooling is employed to project the image representation to graph representation, in which each node representation denotes a specific spinal structure. The adjacency matrix of the graph is designed according to the connection of spinal structures. The graph representation is evolved by graph convolutions. Subsequently, the proposed region unpooling module re-projects the evolved graph representation to a semantic image representation, which facilitates the 3D GCSN to generate reliable coarse segmentation. Finally, the 2D ResUNet refines the segmentation. Experiments on T2-weighted volumetric MR images of 215 subjects show that SpineParseNet achieves impressive performance with mean Dice similarity coefficients of 87.32 ± 4.75%, 87.78 ± 4.64%, and 87.49 ± 3.81% for the segmentations of 10 vertebrae, 9 IVDs, and all 19 spinal structures respectively. The proposed method has great potential in clinical spinal disease diagnoses and treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lgold完成签到,获得积分10
刚刚
知行者完成签到 ,获得积分10
刚刚
enen发布了新的文献求助10
刚刚
赘婿应助weixiaosi采纳,获得10
1秒前
Jasper应助心灵美的白卉采纳,获得10
1秒前
怡然云朵发布了新的文献求助10
2秒前
fjhsulc发布了新的文献求助10
2秒前
荞面小肉包完成签到,获得积分10
2秒前
JamesPei应助幸运鱼采纳,获得10
3秒前
大胆夜绿完成签到,获得积分20
3秒前
4秒前
Jasper应助瑶林采纳,获得10
4秒前
4秒前
Kami完成签到,获得积分10
4秒前
JingP发布了新的文献求助10
4秒前
专注的问筠完成签到,获得积分10
4秒前
4秒前
bkagyin应助圆圆采纳,获得10
5秒前
隐形曼青应助10采纳,获得10
5秒前
cheng发布了新的文献求助10
6秒前
6秒前
叫个啥嘞发布了新的文献求助10
6秒前
失眠采白完成签到,获得积分10
7秒前
医文轩完成签到,获得积分10
7秒前
bingxue发布了新的文献求助10
7秒前
心灵美的白卉完成签到,获得积分20
7秒前
jia发布了新的文献求助10
8秒前
hanyy完成签到,获得积分10
8秒前
bkagyin应助Kami采纳,获得10
8秒前
8秒前
嘻嘻完成签到,获得积分10
9秒前
ibigbird完成签到,获得积分10
9秒前
9秒前
直率的盼曼完成签到,获得积分10
10秒前
10秒前
开朗的大叔完成签到,获得积分10
10秒前
lxx完成签到,获得积分10
10秒前
TT发布了新的文献求助10
11秒前
维多利亚完成签到,获得积分10
11秒前
李金文发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960404
求助须知:如何正确求助?哪些是违规求助? 3506557
关于积分的说明 11131183
捐赠科研通 3238768
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871986
科研通“疑难数据库(出版商)”最低求助积分说明 803118