SpineParseNet: Spine Parsing for Volumetric MR Image by a Two-Stage Segmentation Framework With Semantic Image Representation

分割 人工智能 计算机科学 图像分割 图形 模式识别(心理学) 解析 计算机视觉 代表(政治) 理论计算机科学 政治学 政治 法学
作者
Shumao Pang,Chunlan Pang,Lei Zhao,Yangfan Chen,Zhihai Su,Yujia Zhou,Meiyan Huang,Wei Yang,Hai Lü,Qianjin Feng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (1): 262-273 被引量:94
标识
DOI:10.1109/tmi.2020.3025087
摘要

Spine parsing (i.e., multi-class segmentation of vertebrae and intervertebral discs (IVDs)) for volumetric magnetic resonance (MR) image plays a significant role in various spinal disease diagnoses and treatments of spine disorders, yet is still a challenge due to the inter-class similarity and intra-class variation of spine images. Existing fully convolutional network based methods failed to explicitly exploit the dependencies between different spinal structures. In this article, we propose a novel two-stage framework named SpineParseNet to achieve automated spine parsing for volumetric MR images. The SpineParseNet consists of a 3D graph convolutional segmentation network (GCSN) for 3D coarse segmentation and a 2D residual U-Net (ResUNet) for 2D segmentation refinement. In 3D GCSN, region pooling is employed to project the image representation to graph representation, in which each node representation denotes a specific spinal structure. The adjacency matrix of the graph is designed according to the connection of spinal structures. The graph representation is evolved by graph convolutions. Subsequently, the proposed region unpooling module re-projects the evolved graph representation to a semantic image representation, which facilitates the 3D GCSN to generate reliable coarse segmentation. Finally, the 2D ResUNet refines the segmentation. Experiments on T2-weighted volumetric MR images of 215 subjects show that SpineParseNet achieves impressive performance with mean Dice similarity coefficients of 87.32 ± 4.75%, 87.78 ± 4.64%, and 87.49 ± 3.81% for the segmentations of 10 vertebrae, 9 IVDs, and all 19 spinal structures respectively. The proposed method has great potential in clinical spinal disease diagnoses and treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小柠檬完成签到,获得积分20
刚刚
刚刚
土豆丝完成签到 ,获得积分10
1秒前
念念完成签到,获得积分10
1秒前
乐乐应助starry采纳,获得10
1秒前
温暖冰珍完成签到 ,获得积分10
1秒前
淳之风完成签到,获得积分20
2秒前
CarterXD应助hao采纳,获得30
2秒前
科研rain完成签到 ,获得积分10
2秒前
2秒前
清爽忆山发布了新的文献求助10
3秒前
睡觉晒太阳完成签到,获得积分10
3秒前
andy完成签到,获得积分10
3秒前
3秒前
Itachi12138完成签到,获得积分10
3秒前
CipherSage应助蓝莓松饼采纳,获得10
3秒前
3秒前
团团完成签到,获得积分10
3秒前
追寻的易烟完成签到,获得积分10
3秒前
snow完成签到,获得积分10
4秒前
4秒前
4秒前
1111完成签到,获得积分20
5秒前
爆米花应助笑点低蜜蜂采纳,获得10
5秒前
橘子味汽水完成签到 ,获得积分10
5秒前
Victor陈完成签到,获得积分10
5秒前
5秒前
seed85完成签到,获得积分10
5秒前
最初完成签到,获得积分20
6秒前
Hello应助Chem is try采纳,获得10
6秒前
hhh发布了新的文献求助10
6秒前
6秒前
7秒前
落寞白曼完成签到,获得积分10
8秒前
8秒前
海鸥海鸥发布了新的文献求助10
9秒前
别让我误会完成签到 ,获得积分10
10秒前
10秒前
KK发布了新的文献求助30
10秒前
娃娃完成签到 ,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672