NormAE: Deep Adversarial Learning Model to Remove Batch Effects in Liquid Chromatography Mass Spectrometry-Based Metabolomics Data

化学 代谢组学 色谱法 质谱法 液相色谱-质谱法
作者
Zhiwei Rong,Qilong Tan,Lei Cao,Liuchao Zhang,Kui Deng,Yue Huang,Zheng‐Jiang Zhu,Zhenzi Li,Kang Li
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (7): 5082-5090 被引量:48
标识
DOI:10.1021/acs.analchem.9b05460
摘要

Untargeted metabolomics based on liquid chromatography–mass spectrometry is affected by nonlinear batch effects, which cover up biological effects, result in nonreproducibility, and are difficult to be calibrate. In this study, we propose a novel deep learning model, called Normalization Autoencoder (NormAE), which is based on nonlinear autoencoders (AEs) and adversarial learning. An additional classifier and ranker are trained to provide adversarial regularization during the training of the AE model, latent representations are extracted by the encoder, and then the decoder reconstructs the data without batch effects. The NormAE method was tested on two real metabolomics data sets. After calibration by NormAE, the quality control samples (QCs) for both data sets gathered most closely in a PCA score plot (average distances decreased from 56.550 and 52.476 to 7.383 and 14.075, respectively) and obtained the highest average correlation coefficients (from 0.873 and 0.907 to 0.997 for both). Additionally, NormAE significantly improved biomarker discovery (median number of differential peaks increased from 322 and 466 to 1140 and 1622, respectively). NormAE was compared with four commonly used batch effect removal methods. The results demonstrated that using NormAE produces the best calibration results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hello11发布了新的文献求助10
刚刚
张老师发布了新的文献求助30
刚刚
心灵美半邪完成签到 ,获得积分10
1秒前
x小鱼发布了新的文献求助10
1秒前
1秒前
1秒前
在下想完成签到 ,获得积分10
2秒前
健忘绿茶完成签到,获得积分10
2秒前
尉迟发布了新的文献求助20
2秒前
情怀应助闪闪火车采纳,获得30
2秒前
2秒前
2秒前
LL发布了新的文献求助80
3秒前
4秒前
易辙完成签到,获得积分10
4秒前
万能图书馆应助有趣的银采纳,获得10
4秒前
Orange应助有趣的银采纳,获得10
4秒前
打打应助有趣的银采纳,获得10
4秒前
5秒前
Andy_Cheung完成签到,获得积分10
5秒前
木叶_卡卡西完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
Southluuu发布了新的文献求助10
5秒前
hgg完成签到,获得积分10
6秒前
ding应助憨憨采纳,获得10
6秒前
Peggy完成签到,获得积分10
6秒前
liu发布了新的文献求助10
7秒前
7秒前
Ivy完成签到,获得积分20
9秒前
细腻天蓝完成签到 ,获得积分10
9秒前
9秒前
所所应助小马采纳,获得10
9秒前
9秒前
春秋完成签到,获得积分10
10秒前
伶俐惋清完成签到,获得积分10
10秒前
蝎子莱莱xth完成签到,获得积分10
10秒前
11秒前
11秒前
ding应助帅气绮露采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3658372
求助须知:如何正确求助?哪些是违规求助? 3220507
关于积分的说明 9736007
捐赠科研通 2929450
什么是DOI,文献DOI怎么找? 1603933
邀请新用户注册赠送积分活动 756795
科研通“疑难数据库(出版商)”最低求助积分说明 734133