苯甲醛
光催化
材料科学
钙钛矿(结构)
化学工程
可见光谱
兴奋剂
卤化物
光化学
苯乙烯
催化作用
表面改性
共聚物
无机化学
化学
有机化学
复合材料
光电子学
聚合物
工程类
作者
Ping Qiu,Qiuhe Wang,Yizhou Zhao,Yawen Dai,Yuanyuan Dong,Changli Chen,Qi Chen,Yujing Li
标识
DOI:10.3389/fchem.2020.00130
摘要
The halide perovskite (PVSK) material, an excellent light absorber with fast carrier kinetics, has received increased attention as a potential photocatalyst for organic synthesis. Herein, we report a straightforward synthesis of chemically modified halide perovskite and its application as an efficient photocatalyst to convert styrene into benzaldehyde. A simple method is employed to synthesize the chemically modified CsPbBr3/Cs4PbBr6 nanosheets by using ZrCl4 to simultaneously achieve the Cl doping and the surface modification with Zr species. The photocatalytic oxidation rate of styrene to benzaldehyde catalyzed by surface-modified CsPbBr3/Cs4PbBr6 nanosheets under visible light can reach 1,098 μmol g-1 h-1, 2.9 times higher than that of pristine CsPbBr3/Cs4PbBr6 nanosheets (372 μmol g-1 h-1). The enhanced photocatalytic performance may originate from the modified band structure induced by the synergistic effect of Cl doping and surface modification, whereby the same methodology can be applied to MAPbBr3. This work demonstrates the surface modification of PVSK materials and their potential as efficient photocatalyst toward organic synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI