Coding Programmable Metasurfaces Based on Deep Learning Techniques

计算机科学 编码(社会科学) 深度学习 材料科学 人工智能 光电子学 数学 统计
作者
Tao Shan,Xiaotian Pan,Maokun Li,Shenheng Xu,Fan Yang
出处
期刊:IEEE Journal on Emerging and Selected Topics in Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 114-125 被引量:109
标识
DOI:10.1109/jetcas.2020.2972764
摘要

Programmable metasurfaces have recently been proposed to dynamically manipulate electromagnetic (EM) waves in both temporal and spatial dimensions. With active components integrated into unit cells of the metasurface, states of the unit cells can be adjusted by digital codes. The metasurface can then construct complex spatial and temporal electromagnetic beams. Given the main parameters of the beam, the optimal codes can be computed by nonlinear optimization algorithms, such as genetic algorithm, particle swarm optimization, etc. The high computational complexity of these algorithms makes it very challenging to compute the codes in real time. In this study, we applied deep learning techniques to compute the codes. A deep convolutional neural network is designed and trained to compute the required element codes in milliseconds, given the requirement of the waveform. The average accuracy of the prediction reaches more than 94 percent. This scheme is validated on a 1-bit programmable metasurface and both experimental and numerical results agree with each other well. This study shows that machines may "learn" the physics of modulating electromagnetic waves with the help of the good generalization ability in deep convolutional neural networks. The proposed scheme may provide us with a possible solution for real-time complex beamforming in antenna arrays, such as the programmable metasurface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助hhhhhhhh采纳,获得10
刚刚
科研通AI5应助know采纳,获得10
1秒前
香蕉觅云应助研友_LXOvq8采纳,获得10
1秒前
1秒前
常大美女发布了新的文献求助30
1秒前
顾矜应助灵巧夜天采纳,获得10
1秒前
2秒前
2秒前
天天完成签到,获得积分20
2秒前
科研通AI5应助冰河的羊采纳,获得30
2秒前
2秒前
2秒前
2秒前
Lucas应助不加糖采纳,获得10
3秒前
4秒前
英姑应助豆腐青菜雨采纳,获得10
5秒前
早爹发布了新的文献求助10
5秒前
Lucas应助Lee采纳,获得10
5秒前
5秒前
阳光千亦发布了新的文献求助10
6秒前
搜集达人应助吴五五采纳,获得10
6秒前
7秒前
张星星关注了科研通微信公众号
7秒前
7秒前
7秒前
charon发布了新的文献求助10
7秒前
7秒前
菠萝吹雪发布了新的文献求助10
7秒前
xcl完成签到,获得积分20
8秒前
8秒前
9秒前
小二郎应助悦耳的机器猫采纳,获得10
9秒前
怪胎完成签到,获得积分10
9秒前
刘二狗发布了新的文献求助10
9秒前
英姑应助ytx采纳,获得10
9秒前
唐文硕完成签到,获得积分10
11秒前
坚定紫山发布了新的文献求助10
11秒前
12秒前
英俊的铭应助Zzz采纳,获得10
12秒前
YYD发布了新的文献求助10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735290
求助须知:如何正确求助?哪些是违规求助? 3279275
关于积分的说明 10013771
捐赠科研通 2995856
什么是DOI,文献DOI怎么找? 1643736
邀请新用户注册赠送积分活动 781425
科研通“疑难数据库(出版商)”最低求助积分说明 749387