Computational Approaches to Identify Structural Alerts and Their Applications in Environmental Toxicology and Drug Discovery

药物发现 药品 计算机科学 数据科学 环境毒理学 毒理 计算生物学 生物信息学 生物 医学 药理学 毒性 内科学
作者
Hongbin Yang,Chaofeng Lou,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:33 (6): 1312-1322 被引量:65
标识
DOI:10.1021/acs.chemrestox.0c00006
摘要

Structural alerts are a simple and easy way to identify toxic compounds being widely used in environmental toxicology research and drug discovery. With the emergence of big data techniques in recent years and their applications in chemistry and toxicology, computational approaches have become a promising method to identify structural alerts. In this Review, we describe the recent progress in computational methods for identification of structural alerts and their applications in toxicology. Two major computational approaches, namely frequency analysis and interpretable machine learning models, are reviewed. Recent studies have shown that both approaches are superior to expert systems with respect to predictive capability. Methodologies for defining the applicability domain of such approaches are also reviewed, with their importance stemming from their ability to not only improve the predictive performance of structural alert models but also ensure the confidence of a prediction. In addition to toxicity prediction, structural alerts could be also used to explain quantitative structure-activity relationship models and guide lead optimization in drug discovery. Nevertheless, there are still some challenges to be solved, such as how to address the co-existence of several structural alerts in one molecule, how to directly compare computationally derived structural alerts with expert systems, and how to explore new mechanisms of toxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书记发布了新的文献求助10
刚刚
哈哈完成签到,获得积分10
刚刚
ganzhongxin完成签到,获得积分10
2秒前
2秒前
向日葵完成签到,获得积分10
2秒前
sland发布了新的文献求助10
2秒前
ctdd发布了新的文献求助10
2秒前
吼吼哈哈完成签到,获得积分10
2秒前
3秒前
hututu应助哈哈采纳,获得30
3秒前
3秒前
4秒前
4秒前
麦兜完成签到,获得积分10
5秒前
科研人发布了新的文献求助10
6秒前
7秒前
束负允三金完成签到,获得积分10
7秒前
8秒前
www发布了新的文献求助10
8秒前
9秒前
haoryan完成签到 ,获得积分10
11秒前
何糖发布了新的文献求助10
13秒前
理想小郭完成签到,获得积分10
13秒前
科研人完成签到,获得积分10
13秒前
CodeCraft应助大马猴采纳,获得10
13秒前
JamesPei应助哈哈哈采纳,获得20
15秒前
15秒前
李健的粉丝团团长应助wsy采纳,获得10
15秒前
背后的含蕊完成签到,获得积分10
15秒前
16秒前
yang完成签到,获得积分20
16秒前
16秒前
17秒前
完美世界应助纯情的咖啡采纳,获得10
17秒前
NexusExplorer应助纯情的咖啡采纳,获得10
17秒前
Ava应助璀璨c采纳,获得10
18秒前
18秒前
敬老院N号应助bjzhaikang采纳,获得20
18秒前
冬不拉的红糖纸完成签到,获得积分20
19秒前
19秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328119
求助须知:如何正确求助?哪些是违规求助? 2958244
关于积分的说明 8589820
捐赠科研通 2636574
什么是DOI,文献DOI怎么找? 1443038
科研通“疑难数据库(出版商)”最低求助积分说明 668500
邀请新用户注册赠送积分活动 655733