量子点
石墨烯
纳米材料
材料科学
碳纤维
纳米技术
碳量子点
X射线光电子能谱
表面改性
石墨烯量子点
化学工程
复合数
复合材料
工程类
作者
Anuja Bokare,Dennis Nordlund,Cynthia Melendrez,R.S. Robinson,Özgür Keleş,Abraham Wolcott,Folarin Erogbogbo
标识
DOI:10.1016/j.diamond.2020.108101
摘要
Graphene quantum dots (GQDs) and Carbon dots (C-dots) have been widely studied in recent years due to their structural and optoelectrical properties. These properties have prompted the exploration of the role of these carbon-based materials in many potential applications. This includes solar cells, photodetectors, bioimaging, sensors, batteries and drug delivery. These properties and applications of GQDs and C-dots are highly dependent on their size, shape and surface functionality. In this work, GQDs and C-dots mixtures have been synthesized by an inexpensive wet chemical method by varying the synthesis temperature from 85°, 100° to 115 °C. The surface functionalities of the synthesized carbon-based materials were investigated by several analytical methods. We discovered a higher degree of oxidation at higher temperatures. The mechanism of formation of different sized GQDs and C-dots with different functionalities have been explained with the help of XPS and NEXAFS analysis. The influence of size and surface functionalities on the optical properties of these nanomaterials is analyzed by UV–Vis and PL spectroscopic techniques. This study demonstrates that physicochemical properties of GQDs and C-dots can be controlled by changing the synthesis temperature.
科研通智能强力驱动
Strongly Powered by AbleSci AI