Modeling the effect of temperature on performance of an iron-vanadium redox flow battery with deep eutectic solvent (DES) electrolyte

流动电池 电解质 电化学 电池(电) 水溶液 氧化还原 无机化学 材料科学 电极 化学 化学工程 共晶体系 热力学 功率(物理) 物理化学 有机化学 工程类 物理 合金
作者
Juncai Xu,Qiang Ma,Lei Xing,Huanhuan Li,Puiki Leung,Weiwei Yang,Huaneng Su,Qian Xu
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:449: 227491-227491 被引量:42
标识
DOI:10.1016/j.jpowsour.2019.227491
摘要

Extensive models have been developed to study the performance of aqueous redox flow batteries, especially for all-vanadium flow battery. Nevertheless, there are few established models to study the non-aqueous deep eutectic solvent (DES)-based flow batteries, which have wider electrochemical window and higher energy density than do the aqueous redox flow batteries. In this study, a stationary two-dimensional model is set up to study the performance of iron-vanadium redox flow battery using DES as electrolyte, in which the property parameters of the DES are experimentally determined. The effects of temperature on the over-potentials, pump power loss, distribution of ions concentration and local current density are studied. The simulation results show that with the increase of temperature, the over-potentials decrease mildly; the electrochemical reactions inside the DES-electrolyte redox flow battery mainly happen in the area close to the membrane, which is different from the aqueous one, and the rise of temperature also leads to an improvement of electrode utilization. For the DES electrolyte with higher viscosity, the pump power loss could not be neglected. It is found that the pumping loss of the entire porous electrode largely decreases from 0.138 W at 25 °C to 0.022 W at 55 °C (with 84.05% reduction). These results are in good agreement with the experimental outcomes. Therefore, this model can be applied to predict the performance of DES based battery and further to develop new kinds of non-aqueous flow batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天丽完成签到,获得积分10
刚刚
学术蝗虫发布了新的文献求助10
刚刚
圆圆完成签到,获得积分10
1秒前
LJL完成签到,获得积分10
1秒前
懵懂的行云完成签到,获得积分10
2秒前
hrs完成签到,获得积分10
3秒前
科目三应助Hhhhh采纳,获得10
4秒前
陈杰完成签到,获得积分10
4秒前
归尘应助圆圆采纳,获得10
5秒前
任性的卿完成签到,获得积分10
5秒前
6秒前
ydq完成签到 ,获得积分10
7秒前
8秒前
8秒前
不错的剧场版完成签到,获得积分10
10秒前
11秒前
能干的顾完成签到 ,获得积分10
11秒前
赘婿应助乐唔采纳,获得10
11秒前
爱静静应助开放的大侠采纳,获得10
12秒前
QQ发布了新的文献求助10
13秒前
cang发布了新的文献求助10
13秒前
14秒前
英姑应助luck采纳,获得10
14秒前
tttck发布了新的文献求助10
15秒前
DamonChen发布了新的文献求助10
15秒前
LOT完成签到,获得积分10
16秒前
kingwill应助精灵大夫采纳,获得20
16秒前
思源应助wyy采纳,获得10
19秒前
20秒前
20秒前
22秒前
无敌z完成签到,获得积分10
23秒前
一奡一发布了新的文献求助10
23秒前
爆米花应助研友_nEoEy8采纳,获得10
24秒前
24秒前
CodeCraft应助小芋圆儿采纳,获得10
25秒前
25秒前
李健应助瘦瘦天奇采纳,获得10
26秒前
Cherry发布了新的文献求助10
26秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543997
求助须知:如何正确求助?哪些是违规求助? 3121198
关于积分的说明 9346129
捐赠科研通 2819283
什么是DOI,文献DOI怎么找? 1550110
邀请新用户注册赠送积分活动 722375
科研通“疑难数据库(出版商)”最低求助积分说明 713174