Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning

时间戳 计算机科学 编码 数据挖掘 编码器 循环神经网络 人工智能 深度学习 人工神经网络 特征学习 智能交通系统 图形 机器学习 理论计算机科学 实时计算 运输工程 工程类 基因 操作系统 生物化学 化学
作者
Zheyi Pan,Yuxuan Liang,Weifeng Wang,Yong Yu,Yu Zheng,Junbo Zhang
标识
DOI:10.1145/3292500.3330884
摘要

Predicting urban traffic is of great importance to intelligent transportation systems and public safety, yet is very challenging because of two aspects: 1) complex spatio-temporal correlations of urban traffic, including spatial correlations between locations along with temporal correlations among timestamps; 2) diversity of such spatio-temporal correlations, which vary from location to location and depend on the surrounding geographical information, e.g., points of interests and road networks. To tackle these challenges, we proposed a deep-meta-learning based model, entitled ST-MetaNet, to collectively predict traffic in all location at once. ST-MetaNet employs a sequence-to-sequence architecture, consisting of an encoder to learn historical information and a decoder to make predictions step by step. In specific, the encoder and decoder have the same network structure, consisting of a recurrent neural network to encode the traffic, a meta graph attention network to capture diverse spatial correlations, and a meta recurrent neural network to consider diverse temporal correlations. Extensive experiments were conducted based on two real-world datasets to illustrate the effectiveness of ST-MetaNet beyond several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦的背包完成签到,获得积分10
刚刚
刚刚
赘婿应助Elaine采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
科研小白完成签到,获得积分10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
1秒前
1秒前
思源应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得50
1秒前
CodeCraft应助科研通管家采纳,获得30
1秒前
控制小弟应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
彭于晏完成签到,获得积分10
2秒前
勤劳元瑶完成签到,获得积分10
2秒前
whatever举报muzi求助涉嫌违规
3秒前
小白发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
搬砖工完成签到,获得积分10
4秒前
Lucas应助圈圈采纳,获得10
5秒前
NexusExplorer应助韭菜盒子采纳,获得10
5秒前
5秒前
Harlotte发布了新的文献求助10
5秒前
就是我完成签到,获得积分10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740