Enhancing hot-electron generation and transfer from metal to semiconductor in a plasmonic absorber

材料科学 等离子体子 光电子学 半导体 光探测 吸收(声学) 光伏 等离子纳米粒子 表面等离子共振 等离子太阳电池 纳米颗粒 超快激光光谱学 电子转移 纳米技术 光伏系统 能量转换效率 光学 光电探测器 激光器 光化学 聚合物太阳能电池 复合材料 化学 物理 生物 生态学
作者
Hongdong Li,Wajid Ali,Zuochao Wang,Megersa Feyissa Mideksa,Fei Wang,Xiaoli Wang,Lei Wang,Zhiyong Tang
出处
期刊:Nano Energy [Elsevier BV]
卷期号:63: 103873-103873 被引量:23
标识
DOI:10.1016/j.nanoen.2019.103873
摘要

Plasmon-induced hot electron transfer in metal/semiconductor hybrid structure is of vital importance for various photochemistry applications due to its unique ability to harvest light energy, but the enhancement ability is generally weak in traditional hybrid structures because of low yield of hot electrons and low electron utilization rate. The trade-off between absorption and charge collection is one of the critical challenges to overcome for enhancing the hot electron generation and transfer. Herein, by combining the localized surface plasmon resonance (LSPR) with resonant light trapping, we demonstrate an effective route to design excellent plasmonic absorbers based on metal-semiconductor core-shell nanoparticles (NPs) and metal film. The designed plasmonic absorber [email protected]2O–Au exhibits an intensively enhanced absorption (>90%) in the whole visible range due to the strong destructive interference of partial reflected light by the synergistic effect of the thin absorptive NPs layer and Au film. As corroborated by the transient absorption measurements, except for increase of the hot electron generation, the introduction of plasmonic NPs and Au film can improve greatly the photoelectrochemical performance thanks to the effective triple-channel hot electron transfer pathways. Such a plasmonic absorber can provide an excellent platform for solar energy conversion and paves the way for designing photoelectrochemical cells and various absorptive devices for photovoltaics and photodetection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感谢wsc转发科研通微信,获得积分50
1秒前
笨笨的弱完成签到,获得积分10
1秒前
明理的天蓝完成签到,获得积分20
1秒前
palmora0829完成签到,获得积分10
1秒前
skxxxxxx完成签到,获得积分10
2秒前
2秒前
2秒前
大方的若山完成签到,获得积分10
3秒前
山水之乐发布了新的文献求助10
3秒前
lianhe关注了科研通微信公众号
3秒前
麋鹿完成签到,获得积分20
4秒前
小懿完成签到,获得积分10
4秒前
mouxq完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
科研通AI5应助旭日采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
mtt应助科研通管家采纳,获得20
9秒前
西啃发布了新的文献求助10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
Owen应助2023204306324采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934001
求助须知:如何正确求助?哪些是违规求助? 4202038
关于积分的说明 13055784
捐赠科研通 3976153
什么是DOI,文献DOI怎么找? 2178833
邀请新用户注册赠送积分活动 1195113
关于科研通互助平台的介绍 1106495