Enhancing hot-electron generation and transfer from metal to semiconductor in a plasmonic absorber

材料科学 等离子体子 光电子学 半导体 光探测 吸收(声学) 光伏 等离子纳米粒子 表面等离子共振 等离子太阳电池 纳米颗粒 超快激光光谱学 电子转移 纳米技术 光伏系统 能量转换效率 光学 光电探测器 激光器 光化学 聚合物太阳能电池 生态学 化学 物理 复合材料 生物
作者
Hongdong Li,Wajid Ali,Zuochao Wang,Megersa Feyissa Mideksa,Fei Wang,Xiaoli Wang,Lei Wang,Zhiyong Tang
出处
期刊:Nano Energy [Elsevier]
卷期号:63: 103873-103873 被引量:23
标识
DOI:10.1016/j.nanoen.2019.103873
摘要

Plasmon-induced hot electron transfer in metal/semiconductor hybrid structure is of vital importance for various photochemistry applications due to its unique ability to harvest light energy, but the enhancement ability is generally weak in traditional hybrid structures because of low yield of hot electrons and low electron utilization rate. The trade-off between absorption and charge collection is one of the critical challenges to overcome for enhancing the hot electron generation and transfer. Herein, by combining the localized surface plasmon resonance (LSPR) with resonant light trapping, we demonstrate an effective route to design excellent plasmonic absorbers based on metal-semiconductor core-shell nanoparticles (NPs) and metal film. The designed plasmonic absorber [email protected]2O–Au exhibits an intensively enhanced absorption (>90%) in the whole visible range due to the strong destructive interference of partial reflected light by the synergistic effect of the thin absorptive NPs layer and Au film. As corroborated by the transient absorption measurements, except for increase of the hot electron generation, the introduction of plasmonic NPs and Au film can improve greatly the photoelectrochemical performance thanks to the effective triple-channel hot electron transfer pathways. Such a plasmonic absorber can provide an excellent platform for solar energy conversion and paves the way for designing photoelectrochemical cells and various absorptive devices for photovoltaics and photodetection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
dmr关闭了dmr文献求助
1秒前
XXXXX发布了新的文献求助20
1秒前
对白完成签到,获得积分10
2秒前
小学森完成签到,获得积分10
2秒前
陌路发布了新的文献求助10
3秒前
3秒前
3秒前
傅剑寒发布了新的文献求助10
3秒前
3秒前
4秒前
秋子完成签到,获得积分10
4秒前
风清扬发布了新的文献求助10
4秒前
诸乌完成签到,获得积分20
4秒前
柏林寒冬应助kk采纳,获得10
4秒前
4秒前
Xiaobo发布了新的文献求助10
4秒前
4秒前
研友_kngAY8完成签到,获得积分10
4秒前
乐乐应助FXQ123_范采纳,获得10
4秒前
5秒前
Hello应助搞怪故事采纳,获得10
5秒前
dcfnb完成签到,获得积分10
6秒前
wxnice发布了新的文献求助10
6秒前
marichana发布了新的文献求助20
6秒前
6秒前
方源应助leiguangbin采纳,获得10
6秒前
错过的风景完成签到,获得积分10
7秒前
无极微光应助bb采纳,获得20
8秒前
cheng发布了新的文献求助10
8秒前
8秒前
8秒前
影子芳香发布了新的文献求助10
8秒前
领导范儿应助小萝莉采纳,获得10
9秒前
SciGPT应助浮熙采纳,获得10
9秒前
lxl发布了新的文献求助10
9秒前
科研底层韭菜完成签到 ,获得积分10
9秒前
9秒前
苏苏弋完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505852
求助须知:如何正确求助?哪些是违规求助? 4601404
关于积分的说明 14476173
捐赠科研通 4535332
什么是DOI,文献DOI怎么找? 2485305
邀请新用户注册赠送积分活动 1468307
关于科研通互助平台的介绍 1440779