亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Key Issues Hindering a Practical Lithium-Metal Anode

法拉第效率 锂(药物) 纳米技术 阳极 金属锂 电解质 电池(电) 材料科学 数码产品 工程物理 化学 电气工程 电极 功率(物理) 物理 工程类 内分泌学 物理化学 医学 量子力学
作者
Chengcheng Fang,Xuefeng Wang,Ying Shirley Meng
出处
期刊:Trends in chemistry [Elsevier]
卷期号:1 (2): 152-158 被引量:379
标识
DOI:10.1016/j.trechm.2019.02.015
摘要

Advanced liquid electrolytes can achieve dense Li deposition with a Coulombic efficiency (CE) of approximately 99%. New characterization tools, including cryogenic electron microscopies and quantitative chemical analytical tools, have enhanced the current understanding of Li failure mechanisms. Quantification of inactive Li reveals that the underlying cause of low CE in Li-metal anodes is the large amount of unreacted metallic Li. The sluggish progress of battery technologies has drastically hindered the rapid development of electric vehicles and next-generation portable electronics. The lithium (Li) metal anode is critical to break the energy-density bottleneck of current Li-ion chemistry. After being intensively studied in recent years, the Li-metal field has developed new understanding and made unprecedented progress in preventing Li-dendrite growth and improving Coulombic efficiency, especially through development of advanced electrolytes and novel analytical tools. In this Opinion, we revisit the controversial issues surrounding Li metal as an anode based upon recent advances, revealing the underlying cause of Li-metal failure and the true role of ‘solid electrolyte interphase’ in Li-metal anodes. Finally, we propose future directions that must be taken in order for Li-metal batteries to become commercially viable. The sluggish progress of battery technologies has drastically hindered the rapid development of electric vehicles and next-generation portable electronics. The lithium (Li) metal anode is critical to break the energy-density bottleneck of current Li-ion chemistry. After being intensively studied in recent years, the Li-metal field has developed new understanding and made unprecedented progress in preventing Li-dendrite growth and improving Coulombic efficiency, especially through development of advanced electrolytes and novel analytical tools. In this Opinion, we revisit the controversial issues surrounding Li metal as an anode based upon recent advances, revealing the underlying cause of Li-metal failure and the true role of ‘solid electrolyte interphase’ in Li-metal anodes. Finally, we propose future directions that must be taken in order for Li-metal batteries to become commercially viable. also known as Faraday efficiency; it describes the efficiency with which charge is transferred in a system facilitating an electrochemical reaction. In a closed secondary battery system, the CE directly reflects the battery cyclability. an electron microscopy technique applied on samples cooled down to cryogenic temperatures. This technique significantly reduces the electron beam damage on fragile samples and has been widely adopted in structure biology field to obtain atomic-resolution images. Recently, this technique has been introduced to the battery field and serves as a powerful tool to investigate the nature of extremely beam–sensitive lithium metal and SEI. compounds with layered structures that can host the reversible insertion of molecules or ions into the material. Common intercalation electrode compounds include graphite (anode), TiS2 (cathode), layered oxides (cathode; e.g., LiCoO2 and LiNi0.8Mn0.1Co0.1O2). the interface between the electrode and electrolyte. It forms from the (electro)chemical reaction between the electrode and electrolyte, and the electrochemical decomposition of electrolyte, ensuring the kinetic stabilization of electrode–electrolyte interfaces. It remains conductive to ions but insulates electrons. a new analytical method used to quantify trace amount of metals. It is a combination of protic solvent titration and quantification of H2 amount by gas chromatography. The amount of metals can be calculated from the H2 amount.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可能可能最可能不像不像不太像完成签到 ,获得积分20
1秒前
十四完成签到 ,获得积分10
2秒前
不复返的杆完成签到 ,获得积分10
10秒前
Ava应助Magic1987采纳,获得10
10秒前
卟卟高升完成签到 ,获得积分10
11秒前
13秒前
13秒前
15秒前
高兴的彩虹完成签到,获得积分10
16秒前
17秒前
17秒前
21秒前
litpand发布了新的文献求助10
21秒前
23秒前
水心发布了新的文献求助10
24秒前
28秒前
30秒前
31秒前
研友_VZG7GZ应助糖炒栗子采纳,获得10
32秒前
XCHI完成签到 ,获得积分10
34秒前
36秒前
南桥发布了新的文献求助10
37秒前
39秒前
Polymer72应助猫七采纳,获得10
40秒前
传奇3应助zzz采纳,获得10
41秒前
SciGPT应助炙心采纳,获得30
46秒前
Wilson完成签到 ,获得积分10
47秒前
爆米花应助liwen_xu采纳,获得30
48秒前
52秒前
不吃香菜的小沙完成签到 ,获得积分20
53秒前
温水发布了新的文献求助20
55秒前
嗯哼应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
炙心发布了新的文献求助30
58秒前
59秒前
华仔应助卢敏明采纳,获得10
1分钟前
mmyhn发布了新的文献求助10
1分钟前
litpand完成签到,获得积分0
1分钟前
Zhaowx完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392900
求助须知:如何正确求助?哪些是违规求助? 3003337
关于积分的说明 8808816
捐赠科研通 2690108
什么是DOI,文献DOI怎么找? 1473451
科研通“疑难数据库(出版商)”最低求助积分说明 681591
邀请新用户注册赠送积分活动 674515