Adaptive Neighborhood MinMax Projections

极小极大 子空间拓扑 计算机科学 降维 稳健性(进化) 维数之咒 人工智能 k-最近邻算法 欧几里德距离 样品空间 公制(单位) 模式识别(心理学) 欧几里得空间 数学 数学优化 基因 运营管理 生物化学 经济 化学 纯数学
作者
Haifeng Zhao,Zheng Wang,Feiping Nie
出处
期刊:Neurocomputing [Elsevier]
卷期号:313: 155-166 被引量:8
标识
DOI:10.1016/j.neucom.2018.06.045
摘要

Dimensionality reduction as one of most attractive topics in machine learning research area has aroused extensive attentions in recent years. In order to preserve the local structure of data, most of dimensionality reduction methods consider constructing the relationships among each sample and its k nearest neighbors, and they find the neighbors in original space by using Euclidean distance. Since the data in original space contain some noises and redundant features, finding the neighbors in original space is incorrect and may degrade the subsequent performance. Therefore, how to find the optimal k nearest neighbors for each sample is the key point to improve the robustness of model. In this paper, we propose a novel dimensionality reduction method, named Adaptive Neighborhood MinMax Projections (ANMMP) which finds the neighbors in the optimal subspace by solving Trace Ratio problem in which the noises and redundant features have been removed already. Meanwhile, the samples within same class are pulled together while the samples between different classes are pushed far away in such learned subspace. Besides, proposed model is a general approach which can be implemented easily and applied on other methods to improve the robustness. Extensive experiments conducted on several synthetic data and real-world data sets and achieve some encouraging performance with comparison to metric learning and feature extraction methods, which demonstrates the efficiency of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助快乐篮球采纳,获得10
刚刚
GYR发布了新的文献求助10
1秒前
1秒前
棉花团完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
小马甲应助李里哩采纳,获得10
3秒前
strive发布了新的文献求助10
3秒前
小蘑菇应助satchzhao采纳,获得10
4秒前
梓树发布了新的文献求助10
5秒前
彭于晏应助喜喜不嘻嘻采纳,获得10
5秒前
故槿完成签到 ,获得积分10
6秒前
乙未发布了新的文献求助10
7秒前
7秒前
大模型应助honey采纳,获得10
7秒前
HY发布了新的文献求助10
7秒前
8秒前
模糊老师完成签到,获得积分10
9秒前
9秒前
碧霄完成签到,获得积分10
10秒前
沉默的瑞宝完成签到 ,获得积分10
10秒前
Adam_Lan完成签到,获得积分10
10秒前
顾矜应助明理的帆布鞋采纳,获得10
11秒前
11秒前
乐乐应助乙未采纳,获得10
12秒前
Hello应助儒雅致远采纳,获得10
13秒前
lalalal发布了新的文献求助10
13秒前
14秒前
轨迹应助嘿嘿采纳,获得10
14秒前
Decline发布了新的文献求助10
14秒前
大胆的映萱关注了科研通微信公众号
14秒前
GYR完成签到,获得积分10
15秒前
刘小蕊完成签到,获得积分10
15秒前
花木兰发布了新的文献求助10
15秒前
yuaner发布了新的文献求助10
15秒前
HY完成签到,获得积分10
15秒前
hxh完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167