Adaptive Neighborhood MinMax Projections

极小极大 子空间拓扑 计算机科学 降维 稳健性(进化) 维数之咒 人工智能 k-最近邻算法 欧几里德距离 样品空间 公制(单位) 模式识别(心理学) 欧几里得空间 数学 数学优化 基因 运营管理 生物化学 经济 化学 纯数学
作者
Haifeng Zhao,Zheng Wang,Feiping Nie
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:313: 155-166 被引量:8
标识
DOI:10.1016/j.neucom.2018.06.045
摘要

Dimensionality reduction as one of most attractive topics in machine learning research area has aroused extensive attentions in recent years. In order to preserve the local structure of data, most of dimensionality reduction methods consider constructing the relationships among each sample and its k nearest neighbors, and they find the neighbors in original space by using Euclidean distance. Since the data in original space contain some noises and redundant features, finding the neighbors in original space is incorrect and may degrade the subsequent performance. Therefore, how to find the optimal k nearest neighbors for each sample is the key point to improve the robustness of model. In this paper, we propose a novel dimensionality reduction method, named Adaptive Neighborhood MinMax Projections (ANMMP) which finds the neighbors in the optimal subspace by solving Trace Ratio problem in which the noises and redundant features have been removed already. Meanwhile, the samples within same class are pulled together while the samples between different classes are pushed far away in such learned subspace. Besides, proposed model is a general approach which can be implemented easily and applied on other methods to improve the robustness. Extensive experiments conducted on several synthetic data and real-world data sets and achieve some encouraging performance with comparison to metric learning and feature extraction methods, which demonstrates the efficiency of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz发布了新的文献求助10
1秒前
简单发布了新的文献求助10
1秒前
科研吴彦祖完成签到 ,获得积分10
2秒前
2秒前
诸-z发布了新的文献求助20
2秒前
甜美坤完成签到 ,获得积分10
2秒前
PengHu完成签到,获得积分10
2秒前
4秒前
眼睛大羽毛完成签到 ,获得积分10
4秒前
4秒前
liu完成签到,获得积分20
4秒前
FashionBoy应助中午吃什么采纳,获得10
5秒前
5秒前
不能没有科研完成签到,获得积分10
5秒前
6秒前
7秒前
执着的怜寒完成签到 ,获得积分10
7秒前
所所应助zz采纳,获得10
7秒前
666完成签到,获得积分10
7秒前
7秒前
柚子完成签到 ,获得积分10
7秒前
七曜完成签到,获得积分10
7秒前
8秒前
8秒前
我爱读文献完成签到,获得积分10
8秒前
8秒前
9秒前
蓝月光完成签到,获得积分10
9秒前
liu发布了新的文献求助30
9秒前
摇摇奶昔完成签到,获得积分20
10秒前
10秒前
诸-z完成签到,获得积分10
10秒前
雷清宇完成签到 ,获得积分20
11秒前
11秒前
123发布了新的文献求助10
11秒前
Davidjun完成签到,获得积分10
11秒前
tao完成签到,获得积分10
11秒前
芝儿完成签到 ,获得积分10
11秒前
12秒前
酷酷的西装完成签到 ,获得积分10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960721
求助须知:如何正确求助?哪些是违规求助? 3506928
关于积分的说明 11132948
捐赠科研通 3239182
什么是DOI,文献DOI怎么找? 1790081
邀请新用户注册赠送积分活动 872130
科研通“疑难数据库(出版商)”最低求助积分说明 803128