亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Neighborhood MinMax Projections

极小极大 子空间拓扑 计算机科学 降维 稳健性(进化) 维数之咒 人工智能 k-最近邻算法 欧几里德距离 样品空间 公制(单位) 模式识别(心理学) 欧几里得空间 数学 数学优化 基因 运营管理 生物化学 经济 化学 纯数学
作者
Haifeng Zhao,Zheng Wang,Feiping Nie
出处
期刊:Neurocomputing [Elsevier]
卷期号:313: 155-166 被引量:8
标识
DOI:10.1016/j.neucom.2018.06.045
摘要

Dimensionality reduction as one of most attractive topics in machine learning research area has aroused extensive attentions in recent years. In order to preserve the local structure of data, most of dimensionality reduction methods consider constructing the relationships among each sample and its k nearest neighbors, and they find the neighbors in original space by using Euclidean distance. Since the data in original space contain some noises and redundant features, finding the neighbors in original space is incorrect and may degrade the subsequent performance. Therefore, how to find the optimal k nearest neighbors for each sample is the key point to improve the robustness of model. In this paper, we propose a novel dimensionality reduction method, named Adaptive Neighborhood MinMax Projections (ANMMP) which finds the neighbors in the optimal subspace by solving Trace Ratio problem in which the noises and redundant features have been removed already. Meanwhile, the samples within same class are pulled together while the samples between different classes are pushed far away in such learned subspace. Besides, proposed model is a general approach which can be implemented easily and applied on other methods to improve the robustness. Extensive experiments conducted on several synthetic data and real-world data sets and achieve some encouraging performance with comparison to metric learning and feature extraction methods, which demonstrates the efficiency of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
6秒前
浮岫发布了新的文献求助10
8秒前
浮岫完成签到 ,获得积分10
20秒前
24秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
29秒前
30秒前
rebeycca发布了新的文献求助10
36秒前
奋斗的马里奥完成签到,获得积分10
51秒前
量子星尘发布了新的文献求助10
1分钟前
lei完成签到,获得积分20
1分钟前
跳跃紫真完成签到,获得积分10
1分钟前
CodeCraft应助lei采纳,获得10
1分钟前
大玉124完成签到 ,获得积分10
2分钟前
2分钟前
刘菲特1发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
yr应助科研通管家采纳,获得10
2分钟前
co完成签到,获得积分10
2分钟前
gszy1975发布了新的文献求助10
2分钟前
香蕉觅云应助飞常爱你哦采纳,获得10
2分钟前
2分钟前
2分钟前
跳跃紫真发布了新的文献求助10
2分钟前
LeeHx完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
桃子e发布了新的文献求助10
3分钟前
德芙纵向丝滑完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439