Brain Segmentation From Computed Tomography of Healthy Aging and Geriatric Concussion at Variable Spatial Resolutions

脑震荡 计算机断层摄影术 分割 脑老化 变量(数学) 医学 物理医学与康复 计算机科学 人工智能 放射科 毒物控制 伤害预防 病理 医疗急救 数学 数学分析 疾病
作者
Andrei Irimia,Alexander S. Maher,Kenneth A. Rostowsky,Nahian F. Chowdhury,Darryl Hwang,Emma Law
出处
期刊:Frontiers in Neuroinformatics [Frontiers Media SA]
卷期号:13 被引量:34
标识
DOI:10.3389/fninf.2019.00009
摘要

When properly implemented and processed, anatomic T1-weighted magnetic resonance imaging (MRI) can be ideal for the noninvasive quantification of white matter (WM) and gray matter (GM) in the living human brain. Although MRI is more suitable for distinguishing GM from WM than computed tomography (CT), the growing clinical use of the latter technique has renewed interest in head CT segmentation. Such interest is particularly strong in settings where MRI is unavailable, logistically unfeasible or prohibitively expensive. Nevertheless, whereas MRI segmentation is a sophisticated and technically-mature research field, the task of automatically classifying soft brain tissues from CT remains largely unexplored. Furthermore, brain segmentation methods for MRI hold considerable potential for adaptation and application to CT image processing. Here we demonstrate this by combining probabilistic, atlas-based classification with topologically-constrained tissue boundary refinement to delineate WM, GM and cerebrospinal fluid (CSF) from head CT images. The feasibility and utility of this approach are revealed by comparison of MRI-only vs. CT-only segmentations in geriatric concussion victims with both MRI and CT scans. Comparison of the two segmentations yields mean Sørensen-Dice coefficients of 85.5 ± 4.6% (WM), 86.7 ± 5.6% (GM) and 91.3 ± 2.8% (CSF), as well as average Hausdorff distances of 3.76 ± 1.85 mm (WM), 3.43 ± 1.53 mm (GM) and 2.46 ± 1.27 mm (CSF). Bootstrapping results suggest that the segmentation approach is sensitive enough to yield WM, GM and CSF volume estimates within ~5%, ~4%, and ~3% of their MRI-based estimates, respectively. To our knowledge, this is the first 3D segmentation approach for CT to undergo rigorous within-subject comparison with high-resolution MRI. Results suggest that (1) standard-quality CT allows WM/GM/CSF segmentation with reasonable accuracy, and that (2) the task of soft brain tissue classification from CT merits further attention from neuroimaging researchers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
4秒前
nn发布了新的文献求助10
4秒前
liminghao完成签到,获得积分20
5秒前
Belinda发布了新的文献求助10
6秒前
cheire完成签到,获得积分10
6秒前
开心就好完成签到,获得积分20
6秒前
7秒前
妮妮发布了新的文献求助10
10秒前
之昂完成签到,获得积分10
10秒前
10秒前
周粥舟完成签到,获得积分10
11秒前
12秒前
ZYC完成签到,获得积分10
12秒前
葡萄糖完成签到,获得积分10
14秒前
烟花应助苗儿采纳,获得10
14秒前
14秒前
的y发布了新的文献求助10
16秒前
ZYC发布了新的文献求助10
16秒前
完美世界应助wpf7848采纳,获得10
16秒前
CipherSage应助开心就好采纳,获得10
16秒前
17秒前
辛勤小鸽子完成签到,获得积分10
17秒前
天天快乐应助安详的小凝采纳,获得10
18秒前
香蕉诗蕊应助zzz采纳,获得10
19秒前
霜霜发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
蓓蓓发布了新的文献求助10
22秒前
24秒前
雨兔儿完成签到,获得积分10
25秒前
25秒前
斯文败类应助赵星瑶采纳,获得10
26秒前
26秒前
12完成签到,获得积分10
26秒前
27秒前
斯文败类应助wangjing11采纳,获得10
28秒前
霜霜完成签到,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540561
求助须知:如何正确求助?哪些是违规求助? 4627197
关于积分的说明 14602739
捐赠科研通 4568254
什么是DOI,文献DOI怎么找? 2504430
邀请新用户注册赠送积分活动 1482011
关于科研通互助平台的介绍 1453645