亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Brain Segmentation From Computed Tomography of Healthy Aging and Geriatric Concussion at Variable Spatial Resolutions

脑震荡 计算机断层摄影术 分割 脑老化 变量(数学) 医学 物理医学与康复 计算机科学 人工智能 放射科 毒物控制 伤害预防 病理 医疗急救 数学 数学分析 疾病
作者
Andrei Irimia,Alexander S. Maher,Kenneth A. Rostowsky,Nahian F. Chowdhury,Darryl Hwang,Emma Law
出处
期刊:Frontiers in Neuroinformatics [Frontiers Media SA]
卷期号:13 被引量:34
标识
DOI:10.3389/fninf.2019.00009
摘要

When properly implemented and processed, anatomic T1-weighted magnetic resonance imaging (MRI) can be ideal for the noninvasive quantification of white matter (WM) and gray matter (GM) in the living human brain. Although MRI is more suitable for distinguishing GM from WM than computed tomography (CT), the growing clinical use of the latter technique has renewed interest in head CT segmentation. Such interest is particularly strong in settings where MRI is unavailable, logistically unfeasible or prohibitively expensive. Nevertheless, whereas MRI segmentation is a sophisticated and technically-mature research field, the task of automatically classifying soft brain tissues from CT remains largely unexplored. Furthermore, brain segmentation methods for MRI hold considerable potential for adaptation and application to CT image processing. Here we demonstrate this by combining probabilistic, atlas-based classification with topologically-constrained tissue boundary refinement to delineate WM, GM and cerebrospinal fluid (CSF) from head CT images. The feasibility and utility of this approach are revealed by comparison of MRI-only vs. CT-only segmentations in geriatric concussion victims with both MRI and CT scans. Comparison of the two segmentations yields mean Sørensen-Dice coefficients of 85.5 ± 4.6% (WM), 86.7 ± 5.6% (GM) and 91.3 ± 2.8% (CSF), as well as average Hausdorff distances of 3.76 ± 1.85 mm (WM), 3.43 ± 1.53 mm (GM) and 2.46 ± 1.27 mm (CSF). Bootstrapping results suggest that the segmentation approach is sensitive enough to yield WM, GM and CSF volume estimates within ~5%, ~4%, and ~3% of their MRI-based estimates, respectively. To our knowledge, this is the first 3D segmentation approach for CT to undergo rigorous within-subject comparison with high-resolution MRI. Results suggest that (1) standard-quality CT allows WM/GM/CSF segmentation with reasonable accuracy, and that (2) the task of soft brain tissue classification from CT merits further attention from neuroimaging researchers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小飞发布了新的文献求助10
刚刚
1秒前
1秒前
所所应助小鱼采纳,获得10
1秒前
2秒前
小飞发布了新的文献求助10
2秒前
osel完成签到,获得积分10
2秒前
小飞发布了新的文献求助10
2秒前
3秒前
4秒前
自觉冰海发布了新的文献求助10
5秒前
6秒前
osel发布了新的文献求助10
6秒前
奶昔完成签到,获得积分20
6秒前
小飞发布了新的文献求助10
7秒前
小飞发布了新的文献求助10
7秒前
小飞发布了新的文献求助10
7秒前
小飞发布了新的文献求助10
7秒前
小飞发布了新的文献求助10
7秒前
小飞发布了新的文献求助10
7秒前
小怂完成签到,获得积分20
8秒前
10秒前
小怂发布了新的文献求助10
11秒前
CodeCraft应助王春鉴采纳,获得10
11秒前
FXe发布了新的文献求助10
11秒前
Tanya47应助张志超采纳,获得10
12秒前
hhuajw完成签到,获得积分10
12秒前
JamesPei应助anqi采纳,获得10
13秒前
天真的戾发布了新的文献求助20
15秒前
李健应助zjxxx采纳,获得10
15秒前
15秒前
mitsuha关注了科研通微信公众号
17秒前
18秒前
huhu发布了新的文献求助10
19秒前
大气小天鹅完成签到 ,获得积分10
21秒前
大个应助祁尒采纳,获得10
22秒前
23秒前
Jane发布了新的文献求助150
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650543
求助须知:如何正确求助?哪些是违规求助? 4780917
关于积分的说明 15052239
捐赠科研通 4809450
什么是DOI,文献DOI怎么找? 2572248
邀请新用户注册赠送积分活动 1528412
关于科研通互助平台的介绍 1487268