Brain Segmentation From Computed Tomography of Healthy Aging and Geriatric Concussion at Variable Spatial Resolutions

脑震荡 计算机断层摄影术 分割 脑老化 变量(数学) 医学 物理医学与康复 计算机科学 人工智能 放射科 毒物控制 伤害预防 病理 医疗急救 数学 数学分析 疾病
作者
Andrei Irimia,Alexander S. Maher,Kenneth A. Rostowsky,Nahian F. Chowdhury,Darryl Hwang,Emma Law
出处
期刊:Frontiers in Neuroinformatics [Frontiers Media SA]
卷期号:13 被引量:34
标识
DOI:10.3389/fninf.2019.00009
摘要

When properly implemented and processed, anatomic T1-weighted magnetic resonance imaging (MRI) can be ideal for the noninvasive quantification of white matter (WM) and gray matter (GM) in the living human brain. Although MRI is more suitable for distinguishing GM from WM than computed tomography (CT), the growing clinical use of the latter technique has renewed interest in head CT segmentation. Such interest is particularly strong in settings where MRI is unavailable, logistically unfeasible or prohibitively expensive. Nevertheless, whereas MRI segmentation is a sophisticated and technically-mature research field, the task of automatically classifying soft brain tissues from CT remains largely unexplored. Furthermore, brain segmentation methods for MRI hold considerable potential for adaptation and application to CT image processing. Here we demonstrate this by combining probabilistic, atlas-based classification with topologically-constrained tissue boundary refinement to delineate WM, GM and cerebrospinal fluid (CSF) from head CT images. The feasibility and utility of this approach are revealed by comparison of MRI-only vs. CT-only segmentations in geriatric concussion victims with both MRI and CT scans. Comparison of the two segmentations yields mean Sørensen-Dice coefficients of 85.5 ± 4.6% (WM), 86.7 ± 5.6% (GM) and 91.3 ± 2.8% (CSF), as well as average Hausdorff distances of 3.76 ± 1.85 mm (WM), 3.43 ± 1.53 mm (GM) and 2.46 ± 1.27 mm (CSF). Bootstrapping results suggest that the segmentation approach is sensitive enough to yield WM, GM and CSF volume estimates within ~5%, ~4%, and ~3% of their MRI-based estimates, respectively. To our knowledge, this is the first 3D segmentation approach for CT to undergo rigorous within-subject comparison with high-resolution MRI. Results suggest that (1) standard-quality CT allows WM/GM/CSF segmentation with reasonable accuracy, and that (2) the task of soft brain tissue classification from CT merits further attention from neuroimaging researchers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas完成签到,获得积分10
刚刚
光之霓裳完成签到 ,获得积分10
刚刚
1秒前
吉吉国王完成签到 ,获得积分10
5秒前
PengqianGuo完成签到,获得积分10
6秒前
6秒前
FashionBoy应助ccy采纳,获得10
7秒前
善学以致用应助优秀采纳,获得10
7秒前
9秒前
10秒前
如意二娘完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
nipanpan完成签到,获得积分10
13秒前
woodenfish发布了新的文献求助10
13秒前
三途完成签到 ,获得积分10
13秒前
科研通AI6.1应助¥#¥-11采纳,获得10
14秒前
14秒前
14秒前
源正生物发布了新的文献求助10
15秒前
小兔子发布了新的文献求助10
16秒前
serenity发布了新的文献求助10
16秒前
孙明浩发布了新的文献求助10
18秒前
19秒前
20秒前
12完成签到 ,获得积分10
21秒前
22秒前
Hearing胡发布了新的文献求助10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
CAOHOU应助科研通管家采纳,获得10
24秒前
YifanWang应助科研通管家采纳,获得30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722