Brain Segmentation From Computed Tomography of Healthy Aging and Geriatric Concussion at Variable Spatial Resolutions

脑震荡 计算机断层摄影术 分割 脑老化 变量(数学) 医学 物理医学与康复 计算机科学 人工智能 放射科 毒物控制 伤害预防 病理 医疗急救 数学 数学分析 疾病
作者
Andrei Irimia,Alexander S. Maher,Kenneth A. Rostowsky,Nahian F. Chowdhury,Darryl Hwang,Emma Law
出处
期刊:Frontiers in Neuroinformatics [Frontiers Media SA]
卷期号:13 被引量:34
标识
DOI:10.3389/fninf.2019.00009
摘要

When properly implemented and processed, anatomic T1-weighted magnetic resonance imaging (MRI) can be ideal for the noninvasive quantification of white matter (WM) and gray matter (GM) in the living human brain. Although MRI is more suitable for distinguishing GM from WM than computed tomography (CT), the growing clinical use of the latter technique has renewed interest in head CT segmentation. Such interest is particularly strong in settings where MRI is unavailable, logistically unfeasible or prohibitively expensive. Nevertheless, whereas MRI segmentation is a sophisticated and technically-mature research field, the task of automatically classifying soft brain tissues from CT remains largely unexplored. Furthermore, brain segmentation methods for MRI hold considerable potential for adaptation and application to CT image processing. Here we demonstrate this by combining probabilistic, atlas-based classification with topologically-constrained tissue boundary refinement to delineate WM, GM and cerebrospinal fluid (CSF) from head CT images. The feasibility and utility of this approach are revealed by comparison of MRI-only vs. CT-only segmentations in geriatric concussion victims with both MRI and CT scans. Comparison of the two segmentations yields mean Sørensen-Dice coefficients of 85.5 ± 4.6% (WM), 86.7 ± 5.6% (GM) and 91.3 ± 2.8% (CSF), as well as average Hausdorff distances of 3.76 ± 1.85 mm (WM), 3.43 ± 1.53 mm (GM) and 2.46 ± 1.27 mm (CSF). Bootstrapping results suggest that the segmentation approach is sensitive enough to yield WM, GM and CSF volume estimates within ~5%, ~4%, and ~3% of their MRI-based estimates, respectively. To our knowledge, this is the first 3D segmentation approach for CT to undergo rigorous within-subject comparison with high-resolution MRI. Results suggest that (1) standard-quality CT allows WM/GM/CSF segmentation with reasonable accuracy, and that (2) the task of soft brain tissue classification from CT merits further attention from neuroimaging researchers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭倩发布了新的文献求助10
1秒前
浮游应助小杨采纳,获得10
1秒前
promising完成签到,获得积分20
2秒前
安然完成签到 ,获得积分10
3秒前
4秒前
吴兰田完成签到,获得积分10
4秒前
4秒前
5秒前
煜钧发布了新的文献求助10
5秒前
深情安青应助nana采纳,获得10
6秒前
煜钧发布了新的文献求助10
6秒前
Or1ll完成签到,获得积分10
7秒前
光亮西牛完成签到 ,获得积分10
7秒前
zxczxc完成签到,获得积分10
8秒前
不器完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
晓晓鹤完成签到,获得积分10
9秒前
fy12345完成签到,获得积分20
10秒前
10秒前
烟花应助郭倩采纳,获得10
11秒前
整齐白秋完成签到 ,获得积分10
11秒前
火柴two完成签到,获得积分10
11秒前
煜钧发布了新的文献求助30
11秒前
12秒前
大个应助化学兔八哥采纳,获得10
12秒前
xxx完成签到,获得积分10
12秒前
煜钧发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
promising关注了科研通微信公众号
12秒前
13秒前
13秒前
百里盼山发布了新的文献求助10
13秒前
不知月明是故乡完成签到 ,获得积分10
14秒前
我是老大应助标致秋尽采纳,获得10
15秒前
阿呸发布了新的文献求助10
15秒前
胖虎发布了新的文献求助10
15秒前
15秒前
西莫发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652998
求助须知:如何正确求助?哪些是违规求助? 4789083
关于积分的说明 15062620
捐赠科研通 4811651
什么是DOI,文献DOI怎么找? 2574020
邀请新用户注册赠送积分活动 1529772
关于科研通互助平台的介绍 1488418