Brain Segmentation From Computed Tomography of Healthy Aging and Geriatric Concussion at Variable Spatial Resolutions

脑震荡 计算机断层摄影术 分割 脑老化 变量(数学) 医学 物理医学与康复 计算机科学 人工智能 放射科 毒物控制 伤害预防 病理 医疗急救 数学 数学分析 疾病
作者
Andrei Irimia,Alexander S. Maher,Kenneth A. Rostowsky,Nahian F. Chowdhury,Darryl Hwang,Emma Law
出处
期刊:Frontiers in Neuroinformatics [Frontiers Media SA]
卷期号:13 被引量:34
标识
DOI:10.3389/fninf.2019.00009
摘要

When properly implemented and processed, anatomic T1-weighted magnetic resonance imaging (MRI) can be ideal for the noninvasive quantification of white matter (WM) and gray matter (GM) in the living human brain. Although MRI is more suitable for distinguishing GM from WM than computed tomography (CT), the growing clinical use of the latter technique has renewed interest in head CT segmentation. Such interest is particularly strong in settings where MRI is unavailable, logistically unfeasible or prohibitively expensive. Nevertheless, whereas MRI segmentation is a sophisticated and technically-mature research field, the task of automatically classifying soft brain tissues from CT remains largely unexplored. Furthermore, brain segmentation methods for MRI hold considerable potential for adaptation and application to CT image processing. Here we demonstrate this by combining probabilistic, atlas-based classification with topologically-constrained tissue boundary refinement to delineate WM, GM and cerebrospinal fluid (CSF) from head CT images. The feasibility and utility of this approach are revealed by comparison of MRI-only vs. CT-only segmentations in geriatric concussion victims with both MRI and CT scans. Comparison of the two segmentations yields mean Sørensen-Dice coefficients of 85.5 ± 4.6% (WM), 86.7 ± 5.6% (GM) and 91.3 ± 2.8% (CSF), as well as average Hausdorff distances of 3.76 ± 1.85 mm (WM), 3.43 ± 1.53 mm (GM) and 2.46 ± 1.27 mm (CSF). Bootstrapping results suggest that the segmentation approach is sensitive enough to yield WM, GM and CSF volume estimates within ~5%, ~4%, and ~3% of their MRI-based estimates, respectively. To our knowledge, this is the first 3D segmentation approach for CT to undergo rigorous within-subject comparison with high-resolution MRI. Results suggest that (1) standard-quality CT allows WM/GM/CSF segmentation with reasonable accuracy, and that (2) the task of soft brain tissue classification from CT merits further attention from neuroimaging researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
4秒前
南斋帝完成签到,获得积分10
4秒前
4秒前
PPP完成签到,获得积分10
5秒前
今天不晚饭吃完成签到,获得积分10
5秒前
唐tang发布了新的文献求助10
5秒前
6秒前
6秒前
阳大哥发布了新的文献求助10
6秒前
Benjamin发布了新的文献求助10
7秒前
9秒前
徐炎发布了新的文献求助10
9秒前
阳光的涵菡发布了新的文献求助100
10秒前
10秒前
万能图书馆应助Sweeney采纳,获得30
10秒前
11秒前
14秒前
徐炎完成签到,获得积分10
15秒前
15秒前
wiken发布了新的文献求助30
15秒前
匪石发布了新的文献求助10
16秒前
把拼好的饭给你完成签到,获得积分10
16秒前
16秒前
搜集达人应助草人乙采纳,获得10
17秒前
Ambitious完成签到,获得积分10
17秒前
陈星完成签到,获得积分10
17秒前
绿狗玩偶发布了新的文献求助10
20秒前
自然卷发布了新的文献求助30
20秒前
李健的小迷弟应助yy采纳,获得10
21秒前
英俊的铭应助小巧寻桃采纳,获得10
21秒前
科研通AI2S应助stt采纳,获得10
22秒前
123完成签到 ,获得积分10
25秒前
坚定的泥猴桃完成签到 ,获得积分10
26秒前
26秒前
同學你該吃藥了完成签到 ,获得积分10
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962