Brain Segmentation From Computed Tomography of Healthy Aging and Geriatric Concussion at Variable Spatial Resolutions

脑震荡 计算机断层摄影术 分割 脑老化 变量(数学) 医学 物理医学与康复 计算机科学 人工智能 放射科 毒物控制 伤害预防 病理 医疗急救 数学 数学分析 疾病
作者
Andrei Irimia,Alexander S. Maher,Kenneth A. Rostowsky,Nahian F. Chowdhury,Darryl Hwang,Emma Law
出处
期刊:Frontiers in Neuroinformatics [Frontiers Media SA]
卷期号:13 被引量:34
标识
DOI:10.3389/fninf.2019.00009
摘要

When properly implemented and processed, anatomic T1-weighted magnetic resonance imaging (MRI) can be ideal for the noninvasive quantification of white matter (WM) and gray matter (GM) in the living human brain. Although MRI is more suitable for distinguishing GM from WM than computed tomography (CT), the growing clinical use of the latter technique has renewed interest in head CT segmentation. Such interest is particularly strong in settings where MRI is unavailable, logistically unfeasible or prohibitively expensive. Nevertheless, whereas MRI segmentation is a sophisticated and technically-mature research field, the task of automatically classifying soft brain tissues from CT remains largely unexplored. Furthermore, brain segmentation methods for MRI hold considerable potential for adaptation and application to CT image processing. Here we demonstrate this by combining probabilistic, atlas-based classification with topologically-constrained tissue boundary refinement to delineate WM, GM and cerebrospinal fluid (CSF) from head CT images. The feasibility and utility of this approach are revealed by comparison of MRI-only vs. CT-only segmentations in geriatric concussion victims with both MRI and CT scans. Comparison of the two segmentations yields mean Sørensen-Dice coefficients of 85.5 ± 4.6% (WM), 86.7 ± 5.6% (GM) and 91.3 ± 2.8% (CSF), as well as average Hausdorff distances of 3.76 ± 1.85 mm (WM), 3.43 ± 1.53 mm (GM) and 2.46 ± 1.27 mm (CSF). Bootstrapping results suggest that the segmentation approach is sensitive enough to yield WM, GM and CSF volume estimates within ~5%, ~4%, and ~3% of their MRI-based estimates, respectively. To our knowledge, this is the first 3D segmentation approach for CT to undergo rigorous within-subject comparison with high-resolution MRI. Results suggest that (1) standard-quality CT allows WM/GM/CSF segmentation with reasonable accuracy, and that (2) the task of soft brain tissue classification from CT merits further attention from neuroimaging researchers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liss完成签到 ,获得积分10
刚刚
刚刚
小毛豆发布了新的文献求助50
刚刚
包容若风完成签到,获得积分10
刚刚
炙热笑旋发布了新的文献求助10
1秒前
LL完成签到,获得积分10
1秒前
情怀应助兰闹儿采纳,获得10
1秒前
nihao发布了新的文献求助10
1秒前
1秒前
求助人员发布了新的文献求助10
1秒前
火羊宝发布了新的文献求助10
2秒前
慕青应助咖啡豆采纳,获得10
2秒前
小李完成签到,获得积分10
2秒前
2秒前
纳兰嫣然完成签到,获得积分10
2秒前
mlml完成签到,获得积分10
2秒前
为不争发布了新的文献求助10
3秒前
3秒前
觉皇完成签到,获得积分10
3秒前
stop here完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
英俊的铭应助小毛豆采纳,获得50
5秒前
Jerrder发布了新的文献求助10
5秒前
英俊的铭应助02采纳,获得10
6秒前
6秒前
Zhong完成签到,获得积分10
6秒前
7秒前
Gary发布了新的文献求助10
7秒前
nhocbinzuzu发布了新的文献求助10
7秒前
bkagyin应助玛卡巴卡采纳,获得10
7秒前
反杀闰土的猹完成签到,获得积分10
7秒前
7秒前
8秒前
真实的幻翠完成签到,获得积分20
8秒前
糖老鸭完成签到,获得积分10
8秒前
8秒前
8秒前
fcyyc完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731