Effect of MnO2 Phase Structure on the Oxidative Reactivity toward Bisphenol A Degradation

化学 双酚A 氧化还原 降级(电信) 吸附 氧气 相(物质) 反应性(心理学) 双酚 比表面积 无机化学 有机化学 催化作用 环氧树脂 替代医学 病理 电信 医学 计算机科学
作者
Jianzhi Huang,Shifa Zhong,Yifan Dai,Chung-Chiun Liu,Huichun Zhang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:52 (19): 11309-11318 被引量:262
标识
DOI:10.1021/acs.est.8b03383
摘要

Manganese dioxides (MnO2) are among important environmental oxidants in contaminant removal; however, most existing work has only focused on naturally abundant MnO2. We herein report the effects of different phase structures of synthetic MnO2 on their oxidative activity with regard to contaminant degradation. Bisphenol A (BPA), a frequently detected contaminant in the environment, was used as a probe compound. A total of eight MnO2 with five different phase structures (α-, β-, γ-, δ-, and λ-MnO2) were successfully synthesized with different methods. The oxidative reactivity of MnO2, as quantified by pseudo-first-order rate constants of BPA oxidation, followed the order of δ-MnO2-1 > δ-MnO2-2 > α-MnO2-1 > α-MnO2-2 ≈ γ-MnO2 > λ-MnO2 > β-MnO2-2 > β-MnO2-1. Extensive characterization was then conducted for MnO2 crystal structure, morphology, surface area, reduction potential, conductivity, and surface Mn oxidation states and oxygen species. The results showed that the MnO2 oxidative reactivity correlated highly positively with surface Mn(III) content and negatively with surface Mn average oxidation state but correlated poorly with all other properties. This indicates that surface Mn(III) played an important role in MnO2 oxidative reactivity. For the same MnO2 phase structure synthesized by different methods, higher surface area, reduction potential, conductivity, or surface adsorbed oxygen led to higher reactivity, suggesting that these properties play a secondary role in the reactivity. These findings provide general guidance for designing active MnO2 for cost-effective water and wastewater treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小美发布了新的文献求助10
刚刚
十七应助hauward采纳,获得10
刚刚
风度完成签到,获得积分10
刚刚
1秒前
Hello应助MRM采纳,获得10
1秒前
小马甲应助Suppose采纳,获得10
1秒前
1秒前
LEE完成签到 ,获得积分10
2秒前
老实半双完成签到,获得积分10
2秒前
2秒前
英俊的铭应助结实的凝天采纳,获得10
2秒前
jf完成签到,获得积分10
2秒前
酷酷季节完成签到,获得积分10
2秒前
坚强的霆发布了新的文献求助10
3秒前
rgaerva发布了新的文献求助10
3秒前
3秒前
ie完成签到,获得积分10
4秒前
4秒前
晨儿young完成签到 ,获得积分10
4秒前
jf发布了新的文献求助10
5秒前
Sevi应助Fancy采纳,获得10
5秒前
可爱的函函应助bettle采纳,获得10
5秒前
英姑应助愉快迎南采纳,获得10
6秒前
6秒前
晴空发布了新的文献求助10
6秒前
调研昵称发布了新的文献求助10
7秒前
肖肖肖完成签到 ,获得积分10
7秒前
7秒前
7秒前
大盘菜应助尼妮采纳,获得10
8秒前
丘比特应助白方明采纳,获得10
8秒前
ee发布了新的文献求助10
9秒前
Coolv_xx完成签到,获得积分10
10秒前
healer完成签到,获得积分10
10秒前
酷酷学发布了新的文献求助10
11秒前
11秒前
领导范儿应助加依娜采纳,获得10
11秒前
白夫人发布了新的文献求助10
11秒前
孤独的巨人完成签到,获得积分10
11秒前
善良绮菱发布了新的文献求助10
11秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475079
求助须知:如何正确求助?哪些是违规求助? 3067046
关于积分的说明 9102348
捐赠科研通 2758386
什么是DOI,文献DOI怎么找? 1513636
邀请新用户注册赠送积分活动 699739
科研通“疑难数据库(出版商)”最低求助积分说明 699119