纳米棒
异质结
材料科学
X射线光电子能谱
纳米颗粒
脉冲激光沉积
吸附
纳米技术
三乙胺
图层(电子)
半导体
光电子学
化学工程
薄膜
化学
工程类
有机化学
作者
Xiaopan Song,Li Li,Xin Chen,Qi Xu,Bao Song,Ziyu Pan,Yining Liu,Fangying Juan,Fan Xu,Bingqiang Cao
标识
DOI:10.1016/j.snb.2019.126917
摘要
Chemiresistive gas sensor with high sensitivity, selectivity and fast response for specific target gas has many applications from environmental monitor to internet of things. Herein, a highly sensitive and selective nanostructured triethylamine (TEA) gas sensor is fabricated successfully by designing semiconductor heterostructures consisting of ZnO nanorods and α-Fe2O3 nanoparticles. ZnO nanorods grow directly on flat Al2O3 electrodes and α-Fe2O3 nanoparticles are deposited onto ZnO nanorods by pulsed laser deposition (PLD). Such α-Fe2O3/ZnO sensor has larger specific surface area (20.79 m2/g), adsorbs more oxygen ions and exhibits higher response (63 to 50 ppm TEA), lower detection concentration (˜1 ppm), and shorter response time (4 s), which are all much better than the controlled ZnO nanorods sensor. Besides the interface depletion layer at the α-Fe2O3/ZnO interface, we find that the surface depletion layer due to oxygen absorption is also very important for the sensor performance. Moreover, more surface adsorbed oxygen in the α-Fe2O3/ZnO sensor is proved by both XPS analysis and density functional theory (DFT) simulation, which highlights the significance of gas sensing mechanism study for such composite heterojunction structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI