Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes

石墨烯 材料科学 生物传感器 电极 纳米技术 循环伏安法 工作电极 光电子学 电解质 电化学 化学 物理化学
作者
Ana R. Cardoso,Ana C. Marques,Lídia Santos,Alexandre F. Carvalho,F.M. Costa,Rodrigo Martins,M. Goreti F. Sales,Elvira Fortunato
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:124-125: 167-175 被引量:141
标识
DOI:10.1016/j.bios.2018.10.015
摘要

Graphene has emerged as a novel material with enhanced electrical and structural properties that can be used for a multitude of applications from super-capacitors to biosensors. In this context, an ultra-sensitive biosensor was developed using a low-cost, simple and mask-free method based on laser-induced graphene technique for electrodes patterning. The graphene was produced on a polyimide substrate, showing a porous multi-layer structure with a resistivity of 102.4 ± 7.3 Ω/square. The biosensor was designed as a 3-electrode system. Auxiliary and working electrodes were made of graphene by laser patterning and the reference electrode was handmade by casting a silver ink. A molecularly-imprinted polymer (MIP) was produced at the working electrode by direct electropolymerization of eriochrome black T (EBT). As proof-of-concept, the MIP film was tailored for chloramphenicol (CAP), a common contaminant in aquaculture. The resulting device was evaluated by cyclic voltammetry and electrochemical impedance spectroscopy readings against a redox standard probe. The limit of detection (LOD) was 0.62 nM and the linear response ranged from 1 nM to 10 mM. These analytical features were better than those produced by assembling the same biorecognition element on commercial graphene- and carbon-based screen-printed electrodes. Overall, the simplicity and quickness of the laser-induced graphene technique, along with the better analytical features obtained with the graphene-based electrodes, shows the potential to become a commercial approach for on-site sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助YC采纳,获得10
1秒前
一二三完成签到,获得积分10
2秒前
634301059发布了新的文献求助10
3秒前
6秒前
桂馥兰馨完成签到 ,获得积分10
7秒前
8秒前
10秒前
沉默安波发布了新的文献求助10
11秒前
hmfyl完成签到,获得积分10
12秒前
happyness完成签到,获得积分10
12秒前
Assmpsit发布了新的文献求助10
13秒前
13秒前
荣荣完成签到,获得积分10
14秒前
14秒前
研究畜完成签到,获得积分10
14秒前
麦田稻草人完成签到,获得积分10
16秒前
开朗的菠萝头完成签到,获得积分10
16秒前
17秒前
chrissylaiiii发布了新的文献求助10
17秒前
18秒前
彪壮的若男完成签到 ,获得积分10
19秒前
20秒前
DT发布了新的文献求助10
20秒前
我的苞娜公主完成签到,获得积分10
21秒前
22秒前
xiangdan发布了新的文献求助10
23秒前
ZZ关注了科研通微信公众号
24秒前
Yuu完成签到,获得积分10
24秒前
86400发布了新的文献求助10
25秒前
英俊的铭应助DT采纳,获得10
26秒前
27秒前
28秒前
28秒前
ZLP完成签到,获得积分20
29秒前
30秒前
LI发布了新的文献求助30
30秒前
温眸完成签到,获得积分10
31秒前
31秒前
32秒前
坚强三德完成签到 ,获得积分10
33秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291