Selective Reduction of Oxygen Functional Groups to Improve the Response Characteristics of Graphene Oxide-Based Formaldehyde Sensor Device: A First Principle Study

石墨烯 氧化物 密度泛函理论 甲醛 吸附 分子 材料科学 功能群 纳米技术 化学 物理化学 计算化学 有机化学 复合材料 聚合物
作者
Bibhas Manna,Himadri Raha,Indrajit Chakrabarti,Prasanta Kumar Guha
出处
期刊:IEEE Transactions on Electron Devices [Institute of Electrical and Electronics Engineers]
卷期号:: 1-8 被引量:19
标识
DOI:10.1109/ted.2018.2872179
摘要

This paper presents a density functional theory-based first principle study to investigate the atomic-scale interactions of formaldehyde (H 2 CO) molecules with different oxygen containing functional groups of graphene oxide to identify which particular functional group possesses better adsorption capability toward H 2 CO molecule. The detailed study on formaldehyde adsorption has been conducted in terms of changes in structural, energetic, electronic, and transport properties of graphene oxides modeled with sp 3 hybridized hydroxyl (-OH) and epoxy (C-O-C) groups on the carbon basal plane. Our computational results suggest that the graphene oxidized with only -OH group shows the highest affinity toward formaldehyde as compared with epoxy oxidized graphene and graphene oxide containing both the functional groups. The influence of vacancy defect on improving the sensing response of graphene oxide has also been studied. The results of current-voltage (I-V) characteristics reveal that graphene oxidized with only hydroxyl group can achieve an improvement in sensitivity by almost two times and five times as compared with graphene oxide containing both the functional groups and the pristine graphene sheet, respectively. Moreover, the selectivity test for some common indoor air pollutants was also carried out and the test results suggest that H 2 CO molecule is highly selective toward the -OH group of graphene oxide as compared with the epoxy group.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助活泼天晴采纳,获得10
1秒前
俭朴的以筠完成签到,获得积分20
1秒前
袁宁蔓发布了新的文献求助10
1秒前
111122223333关注了科研通微信公众号
2秒前
文献啊文献完成签到,获得积分10
2秒前
亮星发布了新的文献求助10
2秒前
3秒前
星叶发布了新的文献求助10
3秒前
3秒前
科研通AI5应助谷粱采纳,获得10
3秒前
4秒前
keke完成签到,获得积分20
5秒前
Zn应助简一采纳,获得10
5秒前
liux完成签到 ,获得积分10
6秒前
choubao完成签到,获得积分20
6秒前
Crw__发布了新的文献求助10
6秒前
aldehyde应助直率的颜演采纳,获得10
6秒前
江月年发布了新的文献求助10
7秒前
大模型应助激动的猫咪采纳,获得10
7秒前
东伴完成签到,获得积分10
9秒前
Pinocchior关注了科研通微信公众号
9秒前
国色不染尘完成签到,获得积分10
9秒前
负责的怀梦完成签到,获得积分10
10秒前
胖胖应助江月年采纳,获得10
12秒前
小帅发布了新的文献求助10
13秒前
Crw__完成签到,获得积分20
13秒前
yae应助追寻的绮菱采纳,获得10
14秒前
14秒前
小二郎应助Ryan采纳,获得10
15秒前
Katrina完成签到,获得积分10
15秒前
光亮含羞草完成签到,获得积分20
16秒前
紫金之恋发布了新的文献求助10
16秒前
Jasper应助CYT采纳,获得10
16秒前
丘比特应助ajiaxi采纳,获得10
16秒前
111122223333发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
语物发布了新的文献求助50
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126