神经形态工程学
突触
计算机科学
冯·诺依曼建筑
人工神经网络
长时程增强
神经促进
电阻随机存取存储器
记忆电阻器
神经科学
突触可塑性
人工智能
材料科学
电压
电气工程
化学
工程类
生物
操作系统
受体
生物化学
作者
Shi‐Rui Zhang,Li Zhou,Jing‐Yu Mao,Yi Ren,Jia‐Qin Yang,Guang‐Hu Yang,Xin Zhu,Su‐Ting Han,Vellaisamy A. L. Roy,Ye Zhou
标识
DOI:10.1002/admt.201800342
摘要
Abstract The traditional Von Neumann architecture‐based computers are considered to be inadequate in the coming artificial intelligence era due to increasing computation complexity and rising power consumption. Neuromorphic computing may be the key role to emulate the human brain functions and eliminate the Von Neumann bottleneck. As a basic unit in the nervous system, a synapse is responsible for transmitting information between neurons. Resistive random access memory (RRAM) is able to imitate the synaptic functions because of its tunable resistive switching behavior. Here, an artificial synapse based on solution processed polyvinylpyrrolidone (PVPy)–Au nanoparticle (NP) hybrid is fabricated, various synaptic functions including paired‐pulse facilitation (PPF), posttetanic potentiation (PTP), transformation from short‐term plasticity (STP) to long‐term plasticity (LTP) and learning‐forgetting‐relearning process are emulated, making the polymer–metal NPs hybrid system valuable candidates for the design of novel artificial neural architectures.
科研通智能强力驱动
Strongly Powered by AbleSci AI