人工智能
计算机科学
模式识别(心理学)
图像(数学)
上下文图像分类
卷积神经网络
计算机视觉
作者
Karen Simonyan,Andrea Vedaldi,Andrew Zisserman
出处
期刊:Cornell University - arXiv
日期:2013-01-01
被引量:3272
标识
DOI:10.48550/arxiv.1312.6034
摘要
This paper addresses the visualisation of image classification models, learnt using deep Convolutional Networks (ConvNets). We consider two visualisation techniques, based on computing the gradient of the class score with respect to the input image. The first one generates an image, which maximises the class score [Erhan et al., 2009], thus visualising the notion of the class, captured by a ConvNet. The second technique computes a class saliency map, specific to a given image and class. We show that such maps can be employed for weakly supervised object segmentation using classification ConvNets. Finally, we establish the connection between the gradient-based ConvNet visualisation methods and deconvolutional networks [Zeiler et al., 2013].
科研通智能强力驱动
Strongly Powered by AbleSci AI