Machine learning in materials informatics: recent applications and prospects

计算机科学 信息学 数据科学 领域(数学分析) 指纹(计算) 财产(哲学) 人工智能 机器学习 材料信息学 计算 数据挖掘 管理科学 健康信息学 工程信息学 算法 数学 工程类 哲学 公共卫生 护理部 数学分析 电气工程 认识论 医学
作者
Rampi Ramprasad,Rohit Batra,Ghanshyam Pilania,Arun Mannodi‐Kanakkithodi,Chiho Kim
出处
期刊:npj computational materials [Nature Portfolio]
卷期号:3 (1) 被引量:1410
标识
DOI:10.1038/s41524-017-0056-5
摘要

Abstract Propelled partly by the Materials Genome Initiative, and partly by the algorithmic developments and the resounding successes of data-driven efforts in other domains, informatics strategies are beginning to take shape within materials science. These approaches lead to surrogate machine learning models that enable rapid predictions based purely on past data rather than by direct experimentation or by computations/simulations in which fundamental equations are explicitly solved. Data-centric informatics methods are becoming useful to determine material properties that are hard to measure or compute using traditional methods—due to the cost, time or effort involved—but for which reliable data either already exists or can be generated for at least a subset of the critical cases. Predictions are typically interpolative, involving fingerprinting a material numerically first, and then following a mapping (established via a learning algorithm) between the fingerprint and the property of interest. Fingerprints, also referred to as “descriptors”, may be of many types and scales, as dictated by the application domain and needs. Predictions may also be extrapolative—extending into new materials spaces—provided prediction uncertainties are properly taken into account. This article attempts to provide an overview of some of the recent successful data-driven “materials informatics” strategies undertaken in the last decade, with particular emphasis on the fingerprint or descriptor choices. The review also identifies some challenges the community is facing and those that should be overcome in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
wkjfh应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
爆米花应助hh采纳,获得10
2秒前
打打应助爱听歌土豆采纳,获得10
2秒前
打打应助阿帆采纳,获得10
3秒前
LY_Qin应助花花采纳,获得10
3秒前
4秒前
yhx完成签到,获得积分10
4秒前
情怀应助upward采纳,获得10
5秒前
5秒前
liu发布了新的文献求助10
5秒前
delect完成签到,获得积分10
5秒前
7秒前
陶渊明完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
jphu完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
鲁班七号完成签到,获得积分10
10秒前
好好发布了新的文献求助10
11秒前
毕业发布了新的文献求助10
11秒前
11秒前
顺心的定帮完成签到 ,获得积分10
11秒前
xcwy完成签到,获得积分10
12秒前
再吃一颗苹果完成签到,获得积分10
13秒前
小洛发布了新的文献求助10
13秒前
胡梦园发布了新的文献求助10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427